It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Endoscopic endonasal transsphenoidal approaches are broadly used nowadays for a vast spectrum of pathologies sited in the anterior and middle cranial fossa. The usage of neuronavigation systems (neuronavigation) in these surgeries is crucial for improving orientations deeply inside the skull and increasing patient safety.
Methods
The aim of this study was to assess the use of optical neuronavigation, together with an intraoperative O-arm O2 imaging system, in a group of patients with hypophyseal adenoma that underwent a transnasal transsphenoidal surgery, and correlate the accuracy and its deviation during the navigational process against the use of conventional neuronavigation that uses preoperative MRI and CT scans. The overall group consisted of six patients, between 39 and 78 years old, with a diagnosis of hypophyseal adenoma. Patients were treated with an endoscopic transsphenoidal technique and all of them underwent preoperative MRI and CT scans of the brain. These images were used in the neuronavigation system StealthStation S7® during the surgery, where we defined two bony anatomical landmarks, such as a vomer or the origin of an intrasphenoidal septum, in each operated patient. The tip of the navigational instrument, under endoscopic control, pointed to these landmarks and the distance between the tip and the bony structure was measured on the neuronavigation system. Afterwards, intraoperative 3D x-ray imaging was performed via the mobile system O-arm O2® system with automatic transfer into the navigational system. Under endoscopic guidance, we localized the identical bony anatomical landmarks used in the previous measurement and re-measured the distance between the tip and bony landmark in images acquired by the O-arm. The results of both measurements were statistically compared.
Results
The mean error of accuracy during conventional neuronavigation with usage of preoperative CT and MRI scans was 2.65 mm. During the neuronavigation, with utilization of intraoperative 3D O-arm images, the mean error of accuracy 0 mm. These mean errors of accuracy (both measurement methods were compared by nonparametric Wilcoxon test) had a statistically significant difference (p = 0.043).
Conclusions
Based on this preliminary clinical study, we conclude that the O-arm is capable of providing intraoperative x-ray 3D images in sufficient spatial resolution in a clinically feasible acquisition. The mean error of accuracy during intraoperative navigation, based on 3D O-arm scans at the skull base, is significantly lower compared to the usage of navigation using conventional presurgical CT and MRI images. This suggests the suitability of this method for utilization during endoscopic endonasal skull base approaches.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer