It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Mosquito-borne diseases are a global health problem, causing hundreds of thousands of deaths per year. Pathogens are transmitted by mosquitoes feeding on the blood of an infected host and then feeding on a new host. Monitoring mosquito host-choice behaviour can help in many aspects of vector-borne disease control. Currently, it is possible to determine the host species and an individual human host from the blood meal of a mosquito by using genotyping to match the blood profile of local inhabitants. Epidemiological models generally assume that mosquito biting behaviour is random; however, numerous studies have shown that certain characteristics, e.g. genetic makeup and skin microbiota, make some individuals more attractive to mosquitoes than others. Analysing blood meals and illuminating host-choice behaviour will help re-evaluate and optimise disease transmission models.
Methods
We describe a new blood meal assay that identifies the sex of the person that a mosquito has bitten. The amelogenin locus (AMEL), a sex marker located on both X and Y chromosomes, was amplified by polymerase chain reaction in DNA extracted from blood-fed Aedes aegypti and Anopheles coluzzii.
Results
AMEL could be successfully amplified up to 24 h after a blood meal in 100% of An. coluzzii and 96.6% of Ae. aegypti, revealing the sex of humans that were fed on by individual mosquitoes.
Conclusions
The method described here, developed using mosquitoes fed on volunteers, can be applied to field-caught mosquitoes to determine the host species and the biological sex of human hosts on which they have blood fed. Two important vector species were tested successfully in our laboratory experiments, demonstrating the potential of this technique to improve epidemiological models of vector-borne diseases. This viable and low-cost approach has the capacity to improve our understanding of vector-borne disease transmission, specifically gender differences in exposure and attractiveness to mosquitoes. The data gathered from field studies using our method can be used to shape new transmission models and aid in the implementation of more effective and targeted vector control strategies by enabling a better understanding of the drivers of vector-host interactions.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer