It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Glioblastoma (GBM) is the most common and devastating primary CNS brain tumor with a median survival time of around 14 months. Most patients succumb to re-current disease which is often more malignant than the primary tumor and is frequently therapy resistant. There have not been significant advances in the treatment of GBM despite decades of research. This is partly due to the lack of accurate preclinical models and of the focus on primary rather than recurrent tumors. We created a 350 gene custom GBM-specific panel which contains 16 molecular signatures including molecular sub-typing signatures. We have demonstrated concordance of drug responses across multi-ple patient-derived models using this gene panel. We also developed a novel preclinical model of GBM tumor recurrence and therapy resistance utilizing patient-derived xeno-lines (PDXs) which have undergone serial in vivo selection to radiation therapy (RTS). The non-coding genome/transcriptome has in recent years become a focus for biological and oncology researchers. Non-coding RNAs (ncRNAs) have historically been relegated as junk transcripts, but now the biological importance of ncRNAs has become apparent. Long non-coding RNAs (lncRNAs) are a class of molecules that have become an area of research interest in normal as well as aberrant biology in the past decade. LncRNAs can affect transcriptional programs directly or through epigenetic regulation of chromatin and DNA remodeling. These transcripts can act as signals/guides, molecular sponges, or can be structural as part of ribonucleoprotein complexes. We have molecularly charac-terized our PDX GBM RTS models using paired transcriptomic and kinomic analysis. We developed an in silico analysis pipeline aimed at exploring the roles of lncRNAs in our models. The primary associations of lncRNA expression with transcriptional regula-tion were made by evaluating direct DNA-binding potential of the lncRNAs and looking at the cis-regulatory potential of genes proximal to binding sites. Our data show asso-ciations and correlations of expression of more than 50 lncRNA transcripts with tran-scriptional signatures related to proliferation, stemness, chromatin remodeling, and DNA damage response. We also identified altered kinase enrichment in our models re-lated to lncRNA regulatory networks which may represent druggable targets for recur-rent GBM tumors.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer





