This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
1. Introduction
Throughout the history, herbs have been used in healthcare improvement. Currently, herbal medicine has gained more attention due to their safety and promising pharmacotherapeutics in the Western medicine [1]. However, most of the natural compounds which are highly lipophilic are not ideal for drug delivery because they do not dissolve well in the body [2]. They have lower bioavailability and require repeated administration or higher doses in order to achieve the desired therapeutic effects, which can lead to acute toxicity, adverse effects, and low patient compliance [2, 3].
Nanoencapsulation technology is one of the most effective strategies to overcome the abovementioned hinders of herbal extract [3–6]. The use of nanoparticles as the herbal carrier has received a lot of attention with enthusiasm because it can help enhance the stability and the absorption of dug as well as the an effective permeability to the cell membrane resulting in the maximum of the therapeutic properties of herbal medicine [3]. As a matter of fact, various materials such as liposome, hydrogel has already been developed over the years for herbal medicine delivery purpose [2]. Amongst, polymeric nanoparticles are the most common selection for drug carriers because they are able to encapsulate drug inside nanocarrier due to their excellent biocompatibility, nontoxic to biological system, and biodegradation as well as high stability during storage [4, 7]. In recent times, block copolymers have emerged as a potential agent for drug delivery and gene therapy [5]. The small size, unique nanoscopic architecture, stability, and ability of block copolymer micelles suitable for good compatibility with the drug of choice are all highly desirable characteristics for a drug delivery system [8]. One such block copolymer proposed for controlled drug delivery is pluronic (Poloxamer), which has a triblock PEO−PPO−PEO structure (PEO: poly(ethylene oxide); PPO: poly(propylene oxide)). At high temperatures, the central PPO block becomes hydrophobic, while the PEO blocks remain hydrophilic. Because of this amphiphilic nature, pluronic molecules, above a critical temperature and concentration, self-aggregate in aqueous solutions to form spherical micelles with hydrophobic PPO cores surrounded by hydrophilic PEO coronas [5, 9]. Poloxamers generally regarded as nontoxic and nonirritant materials are used in a variety of oral, parenteral, and topical pharmaceutical formulations [10]. They are neither absorbed from the gastrointestinal tract nor metabolized in the body [11]. Poloxamer 407 (pluronic F127) is one of the most commonly used owing to its solubilizing capacity, low toxicity (LD50 in mice between 1.7 g and 5.0 g/kg body weight), drug release characteristics, and compatibility with numerous biomolecules and excipients [12]. Poloxamer 407 is considered as an “inactive” ingredient for different types of preparations (e.g., IV, inhalation, oral solution, suspension, ophthalmic, or topical formulations) by FDA guide [11]. While there is an upsurge of reviews summarizing the applications of pluronic F127 in the delivery of synthetic drugs, the possible use of these materials in formulating herbal medicines has rarely been put to formal discussions in the literature.
Chromolaena odorata (L.) is a medicinal herb widely distributed in the tropical and subtropical areas. The leaves of the Chromolaena odorata (ChO) are used in the traditional medicine for treatment of ailments such as cough, malaria fever, diarrhea, hemostasis, and wound healing [13]. Moreover, various pharmacological properties of ChO leaf extracts are reported such as antibacterial [14–17], anticancer [18, 19], anticonvulsant [20], antidiabetic [21–23], antidiarrheal [24, 25], antifungal [26, 27], anti-inflammatory [28–30], antioxidant [31–36], antiparasitic [37, 38], hemostatic and wound healing [39–42], and hepatoprotective activities [43, 44]. Pharmacological effects are attributed to the rich presence of lipophilic flavonoids of the leaves such as quercetin, sinensetin, sakuranetin, kaempferol, and salvigenin, which were isolated and identified [13]. However, the biggest dilemma allied with the use of these flavonoids is its low bioavailability due to poor aqueous solubility, which prevents them from clinical application. Therefore, improving solubility of the lipophilic flavonoids may improve the bioavailability and the overall pharmacological activity of ChO extracts.
In the present study, the ChO nanoencapsulation systems using pluronic F127 were first developed. This work describes our findings in relation to the potential usage of pluronic F127 as the carrier for the EA.ChO to promote the biological activity of this fraction. The morphology and size distribution of EA.ChO delivery system were characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM), respectively. The dynamic size of nanoencapsulation was investigated under different media as well as various storage times. Further, we reported some promising wound healing properties of the herbal delivery system, as evidenced by the proliferation of human fibroblast cells and the ability of hemostasis in vivo model.
2. Materials and Methods
2.1. Materials
Pluronic® F127 was supplied by Merk (Singapore). Folin and Ciocalteu’s phenol reagents and gallic acid (standard reagent grade) were purchased at Sigma-Aldrich (Singapore). The other chemical agents for extraction step were ordered from Labscan (Thailand) or Chemsol VINA (Vietnam).
In cell culture, Dulbecco’s modified Eagle’s medium (DMEM), fetal bovine serum (FBS), penicillin-streptomycin solution (10,000 U/mL), and sodium bicarbonate originated from Sigma-Aldrich (Singapore). Phosphate-buffered saline (PBS) (pH 7.4, 1X) was purchased from Gibco. Unless otherwise specified, all other chemicals were acquired from RCI Labscan and Alfa Aesar.
2.1.1. Plant Material
ChO leaves were collected from District 2, Ho Chi Minh City, Vietnam, in August 2018. The plant samples were identified by Doctor Van Hong Thien, Department of Biotechnology, Institute of Biotechnology and Food Technology. The voucher specimen (No. ChO-01) was deposited at School of Medicine—Vietnam National University at Ho Chi Minh City. The leaves were quickly rinsed, dried under shade for 7 days, and then ground into powder by a mechanic grinder and stored in the jugs until use.
2.1.2. Animal Material
Male Swiss albino mice (
2.2. Preparation of Plant Extracts
Powder of the leaves was extracted by ethanol 96% by using the percolation method. Then, the supernatant was concentrated by evaporating the solvent to collect the first crude extract. Next, it was dissolved in methanol 20% and sequentially shaken with different solvents such as petroleum ether, chloroform, and ethyl acetate (EA). The EA solution was collected. Finally, the EA solution was concentrated by evaporation, and the residue was further dried under vacuum at 40°C to obtain the EA crude fraction extract. It was stored in air-tight containers and preserved in the refrigerator for subsequent use.
2.3. Preparation of Nanoparticles
EA extract (1 g) was dissolved in ethanol. F127 (1 g) was prepared in deionized water (20 ml) and then let at 4°C to reach the homogenous state. Extract solution was then dropwised into F127 which was under sonication. The obtained solution was further sonicated for 5 minutes. Next, the solution was stirred at room temperature overnight. The centrifugation at 21000 rpm was applied to remove the nonencapsulated extract. The supernatant was collected and then freeze-dried for further study. The encapsulated efficacy was calculated via the ratio of total phenolic content in nanoparticles.
2.4. Nanoparticle Characterization
2.4.1. Morphology
The shape and surface morphology of the nanoparticles were analyzed by transmission electron microscopy (TEM) (JEM-1400 JEOL).
2.4.2. Analysis of Particle Size and Particle Size Distribution
The
2.4.3. Measurement of Zeta Potential
The zeta potential of the nanoparticle was measured using nanopartica SZ-100 series instrument (Horiba). EA.ChO nanoparticles were prepared in PBS 1X (pH 7.4, Gibco) and then were let stable at 4°C before investigation. This obtain solution was loaded into electrophoretic cell. The data was obtained at 25°C.
2.5. Stability Test of Nanoparticles
First, EA.ChO was dissolved in various aqueous conditions (water, PBS 2.8 and PBS 7.4). Then, these solutions were stable at room temperature for 24 h before measuring size-based DLS techniques. Second, EA.ChO (100 ppm) in PBS 7.4 was put in the room temperature for different time points. At the determined time, the size of EA.ChO was detected under the same condition with previous DLS testing. Each experiment was repeated at 3 independent times.
2.6. In Vitro Release Study
The in vitro drug release was studied by dialysis bag diffusion method [46]. 1 ml sample (EA extract or EA.ChO nanoparticles) was dispersed into dialysis bag (3.5 kDa), and the dialysis bag was immersed in 20 ml of PBS 1X at
2.7. Determination of Phenolic Contents
The total phenolic content was determined for individual extracts using the Folin-Ciocalteu method [47]. Briefly, 0.5 mL of extract solution was mixed with 2.5 mL of 0.5 N Folin-Ciocalteu reagent and incubated at 37°C. After 4 minutes, 2.2 mL of Na2CO3 (10%) was subsequently added to the mixture and incubated at 37°C for 2 hours with intermittent agitation. Afterwards, the absorbance was measured utilizing a UV Spectrophotometer (Shimazu, UV-1800) at 760 nm against a blank without extract. The outcome data were expressed as mg/g of gallic acid equivalents in milligrams per gram (mg GAE/g) of dry extract.
2.8. In Vitro Cytotoxicity and Cell Proliferation Study
2.8.1. Cytotoxicity Assay
The SRB assay [48] was used to carry cytotoxicity in cell-based studies. Human fibroblast cells (BJ (ATCC®CRL-2522™)) were seeded on 96-well plates with the density of
2.8.2. Cell Proliferation
First,
The experiment was repeated 3 times for each independent replication.
2.9. In Vivo Hemostatic Activity Test
The mice were divided into 4 groups: group I (EA.ChO nanoparticle) and group II (EA extract) were treated groups while group III (F127) and group IV (water) were kept as control groups. After 21 consecutive days, the bleeding time and clotting time test were done.
2.9.1. Bleeding Time
Bleeding time was based on the method described by Rajasekaran [49]. Bleeding time was assessed by cutting the tip of the tail of each mouse with a sharp pair of scissors (5 mm); then, the tail was placed in an isotonic saline solution maintained at 37°C immediately. A stopwatch was started simultaneously with the immersion of the tail in the saline solution. Bleeding time was noted from appearance of the first drop of blood to the bleeding stopped completely.
2.9.2. Clotting Time (Drop Method) [50]
First, place a drop of blood (5 mm in diameter) from the tail on a dry glass slide. Then, start the stop watch and note the time. Next, draw a pin through the drop every 30 seconds, and note the time when fibrin threads adhere to the pin and move with it out to the blood drop. The time interval between placing the blood drop on the slide and the formation of fibrin threads was taken as the clotting time.
2.10. Statistics
Results were expressed as
3. Results and Discussion
3.1. Characterization of Chromolaena odorata Nanoencapsulation Systems
In the present study, ethyl acetate fraction extract of the leaves of Chromolaena odorata (EA.ChO) was encapsulated into pluronic F127 micelles by a nanoprecipitation technique combining ultrasonic emulsification and solvent evaporation. The size distribution for empty F127 micelles and EA.ChO loaded micelles are illustrated in Figure 1. The hydrodynamic size of empty F127 micelles when dissolved in PBS at pH 7.4 during preparation was 10.6 nm with polydispersity index (PDI) 0.499 (Figure 1(a)). The incorporation of EA.ChO increases the radii of the micelles, which is parallel with previous experiments involving the encapsulation of drug molecules in pluronic block copolymer micelles [51, 52]. After incorporating EA.ChO, the average size of nanoparticles was 183.7 nm (Figure 1(b)), suggesting the evidence for the successful loading process. In addition, the time correlation function of EA.ChO nanoparticles (inset in Figure 1(b)) exposed a single exponential decay riding on top of a baseline, indicating that EA.ChO nanoparticles are homogeneous size distribution [53] and the interaction between these nanoparticle-like aggregates are small. Nanoparticles of such sizes are known to be easily uptaken by cells [54] rather than eliminated in the blood stream [55], which constitutes a promising feature of EA.ChO nanoparticles in the light of their biomedical application. In agreement with this, the zeta potential was determined to -39.5 mV (Figure 1(c)), which was indicated the high stability of nanoparticles [56]. The negative value in zeta potential could be due to negative charge of phenolic compounds at the surface of particles (F127 micelles) [57] or a higher exposure of negative functional groups of EA.ChO when interacting with incorporated phenolics [58]. Further, the TEM images (Figure 1(d)) showed spherical particles with uniform size and with homogenous structure, which is consistent with the previous assumption about their time correlation function. Regarding drug delivery systems (DDSs), drug-loading efficacy is a critical parameter that directly affects the therapeutic efficacy of the system. Herein, taking total phenolic content (calculated by Folin-Ciocalteu assay) as the evaluation index, the encapsulation efficiency (EE) was established as
[figures omitted; refer to PDF]
3.2. Stability of EA.ChO Nanoencapsulation Systems
The stability of polymeric nanostructured systems plays a critical factor to identify the potential application of this system in biomedical fields. First, the hydrodynamic size (Figure 2) of EA.ChO nanoparticles was assessed to provide their physicochemical behavior in some aqueous solutions (water and PBS 1X with 2 pH values). The evolution of EA.ChO nanoparticle size in water or PBS was almost similar and did not register significant changes. The hydrodynamic size of EA.ChO was around 180 nm and small PDI value (
[figure omitted; refer to PDF]
For additional study in stability, EA.ChO nanoparticles were incubated in PBS 1X and pH 7.4 to simulate physiological conditions, and DLS was monitored over time. The DLS data for EA.ChO nanoparticles at different storage time points are presented in Figure 3. In agreement with zeta potential value of EA.ChO nanoparticles, no statistically significant differences were observed in the size distribution of the aggregates as determined by DLS over a period of 35 days (Welch’s
[figures omitted; refer to PDF]
3.3. In Vitro Drug Release
The release profiles of total phenolic contents from EA.ChO extract and EA.ChO nanoparticles were evaluated in vitro as a function of time in physiological buffer PBS (1X, pH 7.4) at 37°C (Figure 4). The release profiles of both raw EA.ChO extract and its nanoparticle-based pluronic F127 followed a similar behavior with an initial burst release in first 30 minutes; however, thereafter, there was remarkable discrepancy between the two variations. The release of phenolic compounds from as-prepared EA.ChO extract presented a more pronounced initial burst effect, reaching approximately
[figure omitted; refer to PDF]
Observation by fluorescent microscopy (Figure 7) showed that the morphology of fibroblast cells incubating with EA.ChO nanoparticles (0.1 mg/ml) displays typical spindle-like shape as similar to control cells. Although the number of seeding cells was identical in all tested variables, the density of cells was higher in EA.ChO nanoparticles than in the control. Moreover, cell size is also bigger than control. The fibroblast in EA.ChO nanoparticles was in large and well spread. This indicates that the fibroblast cell was metabolically active in the presence of the proposed nanoformulation of EA.ChO.
[figures omitted; refer to PDF]
3.6. In Vivo Hemostatic Activity
In the wound healing process, cessation of bleeding is the first step [61, 62]. Various studies have been proved that ChO leaf extract promoted the excellent hemostatic activity [42, 63]. In this study, our objective was to investigate whether EA.ChO nanoparticles can improve the effectiveness to stop bleeding, compared to raw EA.ChO extract. Following the previous report [64], the dose 150 mg/kg body weight was selected. For the first screening of acute toxicity, both EA.ChO extract and its nanoformulation at this dose were nonlethal for mice, and the behavior and activity were normal in treated mice even after 21-day administration.
As demonstrated in Figure 8, there was no significant difference in both bleeding time (
[figures omitted; refer to PDF]
4. Conclusion
Considering the potential applications of Chromolaena odorata leaf extracts in wound healing, this work developed and demonstrated a strategy to improve their functionality, stability, and cytotoxicity as well as bioavailability of the EA.ChO extract via pluronic F127 micelle-based nanoencapsulation. The EA.ChO extract-loading pluronic F127 has spherical shape, and the dynamic size was below 200 nm, proposing the good absorption in the in vivo application. The size of EA.ChO nanoparticles was also resistant with the change of pH of aqueous solutions. Furthermore, the EA.ChO nanoparticles were stable at prolonged duration of storage time. The comparison of the release profiles of both raw extract and its nanoformulation form revealed the more suitable strategy of utilizing pluronic F127 to encapsulate EA.ChO extract. In vitro cytotoxic assay using fibroblast cell found that the toxicity of EA.ChO extract was significantly reduced as encapsulated in pluronic F127 nanocarriers. Notably, the nanoencapsulation of EA.ChO extract greatly enhanced the proliferative activity of fibroblast cell. In addition, the EA.ChO extract nanoformulation showed an improved blood clotting ability and a reduced blood bleeding in vivo assays as compared to raw extract. In summary, results in this study showed that the polymeric nanoparticle-based pluronic F127 could be used as a strategy to enhance herbal extract bioactivities and present potential for further investigations in food systems and pharmaceutical applications.
Acknowledgments
This research is funded by Viet Nam National University Ho Chi Minh City (VNU-HCM) under grant number (C2019-44-01). The authors would like to thank Doctor Van Hong Thien, Department of Biotechnology, Institute of Biotechnology and Food Technology, Ho Chi Minh City, Vietnam, for authenticating the plant samples. The authors would like to thank Doctor Nguyen Xuan Thanh for taking TEM images.
[1] M. Ekor, "The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety," Frontiers in Pharmacology, vol. 4,DOI: 10.3389/fphar.2013.00177, 2014.
[2] S. Ansari, F. Islam, M. Sameem, "Influence of nanotechnology on herbal drugs: a review," Journal of advanced pharmaceutical technology, vol. 3 no. 3,DOI: 10.4103/2231-4040.101006, 2012.
[3] T. Gunasekaran, T. Haile, T. Nigusse, M. D. Dhanaraju, "Nanotechnology: an effective tool for enhancing bioavailability and bioactivity of phytomedicine," Asian Pacific Journal of Tropical Biomedicine, vol. 4, pp. S1-S7, DOI: 10.12980/APJTB.4.2014C980, 2014.
[4] A. P. Nikam, M. P. Ratnaparkhiand, S. P. Chaudhari, "Nanoparticles–an overview," International Journal of Research Development in Pharmacy Life Sciences, vol. 3 no. 5, pp. 1121-1127, 2014.
[5] P. N. Le, N. Q. Tran, "Advances in thermosensitive polymer-grafted platforms for biomedical applications," Materials Science and Engineering C, vol. 92, pp. 1016-1030, DOI: 10.1016/j.msec.2018.02.006, 2018.
[6] P. N. Le, D. C. Pham, D. H. Nguyen, N. Q. Tran, V. Dimitrov, P. Ivanov, C. N. Xuan, H. N. Nguyen, C. K. Nguyen, "Poly (N-isopropylacrylamide)-functionalized dendrimer as a thermosensitive nanoplatform for delivering Malloapelta B against HepG2 cancer cell proliferation," Advances in Natural Sciences: Nanoscience Nanotechnology, vol. 8 no. 2, 2017.
[7] D. Van Thoai, D. T. Nguyen, N. H. Nguyen, V. T. Nguyen, P. Doan, B. T. Nguyen, N. N. Tung, T. N. Quyen, "Lipophilic effect of various pluronic-grafted gelatin copolymers on the quercetin delivery efficiency in these self-assembly nanogels," Journal of Polymer Research, vol. 27 no. 12, 2020.
[8] V. P. Torchilin, "Block copolymer micelles as a solution for drug delivery problems," Expert Opinion on Therapeutic Patents, vol. 15 no. 1, pp. 63-75, DOI: 10.1517/13543776.15.1.63, 2005.
[9] D. T. Nguyen, V. T. Dinh, L. H. Dang, D. N. Nguyen, B. L. Giang, C. T. Nguyen, T. B. T. Nguyen, L. V. Thu, N. Q. Tran, "Dual interactions of amphiphilic gelatin copolymer and nanocurcumin improving the delivery efficiency of the nanogels," Polymers, vol. 11 no. 5,DOI: 10.3390/polym11050814, 2019.
[10] A. M. Butt, M. C. I. M. Amin, H. Katas, N. Sarisuta, W. Witoonsaridsilp, R. Benjakul, "In Vitro Characterization of Pluronic F127 and D- -Tocopheryl Polyethylene Glycol 1000 Succinate Mixed Micelles as Nanocarriers for Targeted Anticancer- Drug Delivery," Journal of Nanomaterials, vol. 2012,DOI: 10.1155/2012/916573, 2012.
[11] P. J. Sheskey, W. G. Cook, C. G. Cable, Handbook of Pharmaceutical Excipients, 2017.
[12] G. Dumortier, J. L. Grossiord, F. Agnely, J. C. Chaumeil, "A review of poloxamer 407 pharmaceutical and pharmacological characteristics," Pharmaceutical Research, vol. 23 no. 12, pp. 2709-2728, DOI: 10.1007/s11095-006-9104-4, 2006.
[13] M. Ali-Seyed, K. Vijayaraghavan, "Nutraceuticals for Wound Healing: A Special Focus on Chromolaena odorata as Guardian of Health with Broad Spectrum of Biological Activities," Nutraceuticals in Veterinary Medicine, pp. 541-562, 2019.
[14] A. Suksamrarn, A. Chotipong, T. Suavansri, S. Boongird, P. Timsuksai, S. Vimuttipong, A. Chuaynugul, "Antimycobacterial activity and cytotoxicity of flavonoids from the flowers of Chromolaena odorata," Archives of Pharmacal Research, vol. 27 no. 5, pp. 507-511, DOI: 10.1007/BF02980123, 2004.
[15] E. H. Heiss, T. V. A. Tran, K. Zimmermann, S. Schwaiger, C. Vouk, B. Mayerhofer, C. Malainer, A. G. Atanasov, H. Stuppner, V. M. Dirsch, "Identification of chromomoric acid CI as an Nrf2 activator in Chromolaena odorata," Journal of Natural Products, vol. 77 no. 3, pp. 503-508, DOI: 10.1021/np400778m, 2014.
[16] O. Irobi, "Activities of _Chromolaena odorata_ (Compositae) leaf extract against _Pseudomonas aeruginosa_ and _Streptococcus faecalis_," Journal of Ethnopharmacology, vol. 37 no. 1, pp. 81-83, DOI: 10.1016/0378-8741(92)90007-E, 1992.
[17] M. C. Stanley, O. E. Ifeanyi, C. C. Nwakaego, I. O. Esther, "Antimicrobial effects of Chromolaena odorata on some human pathogens," International Journal of Current Microbiology and Applied Sciences, vol. 3 no. 3, pp. 1006-1012, 2014.
[18] P. B. K. Kouamé, C. Jacques, G. Bedi, V. Silvestre, D. Loquet, S. Barillé-Nion, R. J. Robins, I. Tea, "Phytochemicals isolated from leaves of Chromolaena odorata: impact on viability and clonogenicity of cancer cell lines," Phytotherapy Research, vol. 27 no. 6, pp. 835-840, DOI: 10.1002/ptr.4787, 2013.
[19] A. A. Adedapo, A. A. Oyagbemi, O. A. Fagbohun, T. O. Omobowale, M. A. Yakubu, "Evaluation of the anticancer properties of the methanol leaf extract of Chromolaena odorata on HT-29 cell line," Journal of Pharmacognosy and Phytochemistry, vol. 5 no. 2, 2016.
[20] L. Amazu, P. Omoregie, A. Ajugwo, C. Ifezulike, C. Azikiwe, "Anticonvulsant potency of the leaf extract of Chromolaena odorata in rats," Unique Research Journal of Medicine and Medical Sciences, vol. 1, pp. 64-69, 2013.
[21] M. Onkaramurthy, V. Veerapur, B. Thippeswamy, T. M. Reddy, H. Rayappa, S. Badami, "Anti-diabetic and anti-cataract effects of _Chromolaena odorata_ Linn., in streptozotocin-induced diabetic rats," Journal of Ethnopharmacology, vol. 145 no. 1, pp. 363-372, DOI: 10.1016/j.jep.2012.11.023, 2013.
[22] F. O. Uhegbu, C. Imo, C. H. Onwuegbuchulam, "Lipid lowering, hypoglycemic and antioxidant activities of Chromolaena odorata (L) and Ageratum conyzoides (L) ethanolic leaf extracts in albino rats," Journal of Medicinal Plants Studies, vol. 4 no. 2, pp. 155-159, 2016.
[23] S. Ijioma, A. Okafor, P. Ndukuba, A. Nwankwo, S. Akomas, "Hypoglycemic, hematologic and lipid profile effects of Chromolaena odorata ethanol leaf extract in alloxan induced diabetic rats," Annals of Biological Sciences, vol. 2, pp. 27-32, 2014.
[24] M. Atindehou, L. Lagnika, B. Guérold, J. M. Strub, M. Zhao, A. Van Dorsselaer, E. Marchioni, G. Prévost, Y. Haikel, C. Taddéi, "Isolation and identification of two antibacterial agents from <i>Chromolaena odorata</i> L. active against four diarrheal strains," Advances in Microbiology, vol. 3 no. 1, pp. 115-121, DOI: 10.4236/aim.2013.31018, 2013.
[25] P. E. Aba, P. E. Joshua, F. C. Ezeonuogu, M. I. Ezeja, V. U. Omoja, P. U. Umeakuana, "Possible anti-diarrhoeal potential of ethanol leaf extract of Chromolaena odorata in castor oil-induced rats," Journal of Complementary and Integrative Medicine, vol. 12 no. 4, pp. 301-306, DOI: 10.1515/jcim-2014-0033, 2015.
[26] A. N. Ngane, R. E. Etame, F. Ndifor, L. Biyiti, P. A. Zollo, P. Bouchet, "Antifungal activity of Chromolaena odorata (L.) King & Robinson(Asteraceae) of Cameroon," Chemotherapy, vol. 52 no. 2, pp. 103-106, DOI: 10.1159/000092373, 2006.
[27] K. Naidoo, R. Coopoosamy, G. Naidoo, "Screening of Chromolaeana odorata (L.) King and Robinson for antibacterial and antifungal properties," Journal of Medicinal Plants Research, vol. 5 no. 19, pp. 4859-4862, 2011.
[28] V. B. Owoyele, J. O. Adediji, A. O. Soladoye, "Anti-inflammatory activity of aqueous leaf extract of Chromolaena odorata," Inflammopharmacology, vol. 13 no. 5-6, pp. 479-484, DOI: 10.1163/156856005774649386, 2005.
[29] T. T. H. Hanh, D. T. T. Hang, C. Van Minh, N. T. Dat, "Anti-inflammatory effects of fatty acids isolated from Chromolaena odorata," Asian Pacific Journal of Tropical Medicine, vol. 4 no. 10, pp. 760-763, DOI: 10.1016/S1995-7645(11)60189-2, 2011.
[30] H. Pandith, X. Zhang, S. Thongpraditchote, Y. Wongkrajang, W. Gritsanapan, S. J. Baek, "Effect of Siam weed extract and its bioactive component scutellarein tetramethyl ether on anti-inflammatory activity through NF- κ B pathway," Journal of Ethnopharmacology, vol. 147 no. 2, pp. 434-441, DOI: 10.1016/j.jep.2013.03.033, 2013.
[31] P. T. Thang, L. S. Teik, C. S. Yung, "Anti-oxidant effects of the extracts from the leaves of _Chromolaena odorata_ on human dermal fibroblasts and epidermal keratinocytes against hydrogen peroxide and hypoxanthine -xanthine oxidase induced damage," Burns, vol. 27 no. 4, pp. 319-327, DOI: 10.1016/S0305-4179(00)00137-6, 2001.
[32] A. C. Akinmoladun, E. Ibukun, I. Dan-Ologe, "Phytochemical constituents and antioxidant properties of extracts from the leaves of Chromolaena odorata," Scientific Research and Essays, vol. 2 no. 6, pp. 191-194, 2007.
[33] K. P. Melinda, X. Rathinam, K. Marimuthu, A. Diwakar, S. Ramanathan, S. Kathiresan, S. Subramaniam, "A comparative study on the antioxidant activity of methanolic leaf extracts of Ficus religiosa L, Chromolaena odorata (L.) King & Rabinson, Cynodon dactylon (L.) Pers. and Tridax procumbens L.," Asian Pacific Journal of Tropical Medicine, vol. 3 no. 5, pp. 348-350, DOI: 10.1016/S1995-7645(10)60084-3, 2010.
[34] K. S. Rao, P. K. Chaudhury, A. Pradhan, "Evaluation of anti-oxidant activities and total phenolic content of _Chromolaena odorata_," Food and Chemical Toxicology, vol. 48 no. 2, pp. 729-732, DOI: 10.1016/j.fct.2009.12.005, 2010.
[35] K. Vijayaraghavan, A. Mohammed, R. Maruthi, "Studies on phytochemical screening & antioxidant activity of Chromolaena odorata & Anonasquamosal," International Journal of Innovative Research in Science, Engineering &Technology, vol. 2 no. 12, 2013.
[36] T. Boudjeko, R. Megnekou, A. L. Woguia, F. M. Kegne, J. E. K. Ngomoyogoli, C. D. N. Tchapoum, O. Koum, "Antioxidant and immunomodulatory properties of polysaccharides from Allanblackia floribunda Oliv stem bark and Chromolaena odorata (L.) King and H.E. Robins leaves," BMC research notes, vol. 8 no. 1,DOI: 10.1186/s13104-015-1703-x, 2015.
[37] I. Ezenyi, O. Salawu, R. Kulkarni, M. Emeje, "Antiplasmodial activity-aided isolation and identification of quercetin-4’-methyl ether in Chromolaena odorata leaf fraction with high activity against chloroquine-resistant Plasmodium falciparum," Parasitology Research, vol. 113 no. 12, pp. 4415-4422, DOI: 10.1007/s00436-014-4119-y, 2014.
[38] M. Boppré, T. Thoden, J. Hallmann, "Pyrrolizidine alkaloids of Chromolaena odorata act as nematicidal agents and reduce infection of lettuce roots by Meloidogyne incognita," Nematology, vol. 9 no. 3, pp. 343-349, DOI: 10.1163/156854107781352016, 2007.
[39] A. Pandurangan, K. Rana, A. Singh, "Evaluation wound healing activity of leaves of Chromolaena odorata Linn," International Journal of Pharmaceutical Sciences Letters, vol. 5, pp. 555-557, 2015.
[40] G. Anyasor, D. Aina, M. Olushola, A. Aniyikaye, "Phytochemical constituent, proximate analysis, antioxidant, antibacterial and wound healing properties of leaf extracts of Chromolaena odorata," Annals of Biological Research, vol. 2 no. 2, pp. 441-451, 2011.
[41] P. Akah, "Mechanism of hemostatic activity ofEupatorium odoratum," International Journal of Crude Drug Research, vol. 28 no. 4, pp. 253-256, DOI: 10.3109/13880209009082829, 2008.
[42] H. Pandith, S. Thongpraditchote, Y. Wongkrajang, W. Gritsanapan, "In vivo and in vitro hemostatic activity of Chromolaena odorata leaf extract," Pharmaceutical Biology, vol. 50 no. 9, pp. 1073-1077, DOI: 10.3109/13880209.2012.656849, 2012.
[43] C. S. Alisi, G. O. C. Onyeze, O. A. Ojiako, C. G. Osuagwu, "Evaluation of the protective potential of Chromolaena odorata Linn. extract on carbon tetrachloride-induced oxidative liver damage," International Journal of Biochemistry Research & Review, vol. 1 no. 3, 2011.
[44] R. Asomugha, P. Okafor, I. Ijeh, O. Orisakwe, A. Asomugha, "Hepatic effects of aqueous extract of Chromolaena odorata in male Wistar albino rats," Pharmacology, vol. 1, pp. 127-136, 2014.
[45] Council for International Organization of Medical Sciences and the International Council for Laboratory Animal Science, "The International Guiding Principles for Biomedical Research Involving Animals," . 2012, https://olaw.nih.gov/sites/default/files/Guiding_Principles_2012.pdf
[46] Y.-C. Kuo, J.-F. Chung, "Physicochemical properties of nevirapine-loaded solid lipid nanoparticles and nanostructured lipid carriers," Colloids and Surfaces B: Biointerfaces, vol. 83 no. 2, pp. 299-306, DOI: 10.1016/j.colsurfb.2010.11.037, 2011.
[47] V. L. Singleton, R. Orthofer, R. M. Lamuela-Raventós, "Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent," Methods in Enzymology, vol. 299, pp. 152-178, DOI: 10.1016/S0076-6879(99)99017-1, 1999.
[48] P. Skehan, R. Storeng, D. Scudiero, A. Monks, J. McMahon, D. Vistica, J. T. Warren, H. Bokesch, S. Kenney, M. R. Boyd, "New colorimetric cytotoxicity assay for anticancer-drug screening," JNCI Journal of the National Cancer Institute, vol. 82 no. 13, pp. 1107-1112, DOI: 10.1093/jnci/82.13.1107, 1990.
[49] A. Rajasekaran, M. Kalaivani, G. Ariharasivakumar, "Haemostatic effect of fresh juice and methanolic extract of. leaves in rat model," International Journal of Biological and Medical Research, vol. 1 no. 3, pp. 85-87, 2010.
[50] C. Ghai, A Textbook of Practical Physiology, 2012.
[51] R. Basak, R. Bandyopadhyay, "Encapsulation of hydrophobic drugs in Pluronic F127 micelles: effects of drug hydrophobicity, solution temperature, and pH," Langmuir, vol. 29 no. 13, pp. 4350-4356, DOI: 10.1021/la304836e, 2013.
[52] P. K. Sharma, S. R. Bhatia, "Effect of anti-inflammatories on Pluronic ® F127: micellar assembly, gelation and partitioning," International Journal of Pharmaceutics, vol. 278 no. 2, pp. 361-377, DOI: 10.1016/j.ijpharm.2004.03.029, 2004.
[53] L. H. Dang, M. T. Vu, J. Chen, C. K. Nguyen, L. G. Bach, N. Q. Tran, V. T. J. A. O. Le, "Effect of ultrasonication on self-assembled nanostructures formed by amphiphilic positive-charged copolymers and negative-charged drug," ACSomega, vol. 4 no. 3, pp. 4540-4552, 2019.
[54] L. Shang, K. Nienhaus, G. U. Nienhaus, "Engineered nanoparticles interacting with cells: size matters," Journal of nanobiotechnology, vol. 12 no. 1,DOI: 10.1186/1477-3155-12-5, 2014.
[55] K. Y. Win, S.-S. Feng, "Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs," Biomaterials, vol. 26 no. 15, pp. 2713-2722, DOI: 10.1016/j.biomaterials.2004.07.050, 2005.
[56] H. S. Kang, S.-S. Kwon, Y.-S. Nam, S.-H. Han, I.-S. Chang, "Determination of zeta potentials of polymeric nanoparticles by the conductivity variation method," Journal of Colloid and Interface Science, vol. 255 no. 2, pp. 352-355, DOI: 10.1006/jcis.2002.8675, 2002.
[57] J. Zhang, D. Wang, Y. Wu, W. Li, Y. Hu, G. Zhao, C. Fu, S. Fu, L. Zou, "Lipid–polymer hybrid nanoparticles for oral delivery of tartary buckwheat flavonoids," Journal of Agricultural and Food Chemistry, vol. 66 no. 19, pp. 4923-4932, DOI: 10.1021/acs.jafc.8b00714, 2018.
[58] M. Soleimanifar, S. M. Jafari, E. Assadpour, "Encapsulation of olive leaf phenolics within electrosprayed whey protein nanoparticles; production and characterization," Food Hydrocolloids, vol. 101,DOI: 10.1016/j.foodhyd.2019.105572, 2020.
[59] M.-H. Nguyen, S. E. Lee, T.-T. Tran, C.-B. Bui, T.-T. Tran, T.-T. Nguyen, K. Hadinoto, "A simple strategy to enhance the in vivo wound-healing activity of curcumin in the form of self-assembled nanoparticle complex of curcumin and oligochitosan," Materials Science and Engineering: C, vol. 98, pp. 54-64, DOI: 10.1016/j.msec.2018.12.091, 2019.
[60] T. T. Phan, M. A. Hughes, G. W. Cherry, "Enhanced proliferation of fibroblasts and endothelial cells treated with an extract of the leaves of Chromolaena odorata (Eupolin), an herbal remedy for treating wounds," Plastic and Reconstructive Surgery, vol. 101 no. 3, pp. 756-765, DOI: 10.1097/00006534-199803000-00027, 1998.
[61] J. Qu, X. Zhao, Y. Liang, T. Zhang, P. X. Ma, B. Guo, "Antibacterial adhesive injectable hydrogels with rapid self-healing, extensibility and compressibility as wound dressing for joints skin wound healing," Biomaterials, vol. 183, pp. 185-199, DOI: 10.1016/j.biomaterials.2018.08.044, 2018.
[62] J. He, M. Shi, Y. Liang, B. Guo, "Conductive adhesive self-healing nanocomposite hydrogel wound dressing for photothermal therapy of infected full-thickness skin wounds," Chemical Engineering Journal, vol. 394,DOI: 10.1016/j.cej.2020.124888, 2020.
[63] H. Pandith, X. Zhang, J. Liggett, K.-W. Min, W. Gritsanapan, S. J. Baek, "Hemostatic and wound healing properties of Chromolaena odorata leaf extract," ISRN Dermatology, vol. 2013,DOI: 10.1155/2013/168269, 2013.
[64] S. Akomas, S. Ijioma, "Bleeding and clotting time effect of ethanolic extracts of Chromolaena odorata versus Ocimum gratissimum treated albino rats," Journals of Medical Sciences, vol. 2 no. 1, 2014.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Copyright © 2021 Ngoc-Dung Huynh Luu et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/
Abstract
Chromolaena odorata is a medicinal herb with prominent pharmacological properties. The therapeutic efficiency of Chromolaena odorata extracts and its ingredients have, however, been limited by various factors, including the lack of targeting capacity and poor bioavailability. To approach this drawback, ethyl acetate fraction extract of Chromolaena odorata- (EA.ChO-) encapsulated pluronic-based nanocarriers was disclosed herein. The most common pluronic triblock copolymer micelles (pluronic F127) was used for the nanosized formulation of Chromolaena odorata extract. The obtained results show that EA.ChO-encapsulated nanoparticles have a spherical morphology with a designed hydrodynamic size was about 183.7 nm and zeta potential -39.5 mV. The EA.ChO nanoparticles are stable in different aqueous solutions (water, PBS 2.8, and PBS 7.4). The lyophilized form of the EA.ChO nanoparticles exhibited excellent stability for long-term storage. Notably, the EA.ChO nanoparticles were 1.3-1.4 fold more effective in the growth of fibroblast than the free EA.ChO, verifying the potential of pluronic F127 nanoparticles to the increased function of EA.ChO in the proliferation of fibroblast cell. In addition, bleeding stopped within
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details



1 School of Medicine, Ho Chi Minh City, Vietnam; School of Biotechnology, International University, Ho Chi Minh City, Vietnam; Vietnam National University, Ho Chi Minh City, Vietnam
2 Institute of Applied Materials Science, Vietnam Academy of Science and Technology (VAST), Ho Chi Minh City, Vietnam; Graduate University of Science and Technology, Vietnam Academy of Science and Technology, HCMC, Vietnam
3 Faculty of Pharmacy, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
4 Department of Natural Science, Thu Dau Mot University, Thu Dau Mot City 590000, Vietnam
5 School of Biotechnology, International University, Ho Chi Minh City, Vietnam; Vietnam National University, Ho Chi Minh City, Vietnam