It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The GABAergic and glutamatergic systems play key roles in controlling activity of the central nervous system. Important membrane proteins in the mammalian central nervous system transporting extracellular GABA and glutamate are the GABA transporter GAT1 and the glutamate transporter EAAC1. We investigated the effect of catechins of green tea (Camellia sinensis) on the activity of GAT1 and EAAC1 by detecting the respective electrogenic transporter-mediated current under voltage clamp. Epigallocatechin-3-gallate inhibited GAT1-mediated current to 50% at about 100 μM. The EAAC1-mediated current could be stimulated up to 80% by (-)-epicatechin; 50% of maximum stimulation was achieved by about 5 μM. Inhibition of GAT1 and stimulation of EAAC1 will counteract hyperexcitability.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Shanghai Research Center for Acupuncture and Meridians, Shanghai, China; Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China; Institute for Biophysics, Goethe-University Frankfurt, Frankfurt am Main, Germany
2 Shanghai Research Center for Acupuncture and Meridians, Shanghai, China; Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China