Full text

Turn on search term navigation

© 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This paper presents a process condition diagram (PCD) that not only identifies conditions under which materials fracture during bar drawing, but also infers the presence or absence of microdefects such as microvoids and microcracks in the drawn material as accumulative damage changes owing to the die semi-angle and reduction ratio. The accumulative damage values were calculated by finite element (FE) analysis. The critical damage values were determined by performing a tensile test using a smooth round bar tensile specimen and performing FE analysis simulating the tensile test. High alloy steel with a 13 mm diameter was used for the draw bench testing in a wide range of drawing conditions. Scanning electron microscopy (SEM) analysis was performed to verify the usefulness of the PCD. SEM images showed that the accumulative damage roughly matched the size of microvoids around the non-metallic inclusions and the creation of microcracks, which eventually led to fractures of material being drawn. Hence, utilizing the proposed PCD, a process designer can design drawing conditions that minimize the occurrence of microdefects in the material being drawn while maximizing the reduction ratio.

Details

Title
Process Condition Diagram Predicting Onset of Microdefects and Fracture in Cold Bar Drawing
First page
479
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20754701
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2502551630
Copyright
© 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.