Abstract
Background:
The early identification of heart failure (HF) risk may favorably affect outcomes, and the combination of multiple biomarkers may provide a more comprehensive and valuable means for improving the risk of stratification. This study was conducted to assess the importance of individual cardiac biomarkers creatine kinase MB isoenzyme (CK-MB), B-type natriuretic peptide (BNP), galectin-3 (Gal-3) and soluble suppression of tumorigenicity-2 (sST2) for HF diagnosis, and the predictive performance of the combination of these four biomarkers was analyzed using random forest algorithms.
Methods:A total of 193 participants (80 patients with HF and 113 age- and gender-matched healthy controls) were included from June 2017 to December 2017. The correlation and regression analysis were conducted between cardiac biomarkers and echocardiographic parameters. The accuracy and importance of these predictor variables were assessed using random forest algorithms.
Results:Patients with HF exhibited significantly higher levels of CK-MB, BNP, Gal-3, and sST2. BNP exhibited a good independent predictive capacity for HF (AUC 0.956). However, CK-MB, sST2, and Gal-3 exhibited a modest diagnostic performance for HF, with an AUC of 0.709, 0.711, and 0.777, respectively. BNP was the most important variable, with a remarkably higher mean decrease accuracy and Gini. Furthermore, there was a general increase in predictive performance using the multi-marker model, and the sensitivity, specificity was 91.5% and 96.7%, respectively.
Conclusion:The random forest algorithm provides a robust method to assess the accuracy and importance of predictor variables. The combination of CK-MB, BNP, Gal-3, and sST2 achieves improvement in prediction accuracy for HF.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Clinical Laboratory, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China; Department of Clinical Laboratory Center, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
2 Department of Clinical Laboratory Center, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
3 Clinical Laboratory, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China