It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
A central challenge in the computational modeling of neural dynamics is the trade-off between accuracy and simplicity. At the level of individual neurons, nonlinear dynamics are both experimentally established and essential for neuronal functioning. One may therefore expect the collective dynamics of massive networks of such neurons to exhibit an even larger repertoire of nonlinear behaviors. An implicit assumption has thus formed that an "accurate" computational model of whole-brain dynamics must inevitably be nonlinear whereas linear models may provide a first-order approximation. To what extent this assumption holds, however, has remained an open question. Here, we provide new evidence that challenges this assumption at the level of whole-brain blood-oxygen-level-dependent (BOLD) and macroscopic field potential dynamics by leveraging the theory of system identification. Using functional magnetic resonance imaging (fMRI) and intracranial electroencephalography (iEEG), we model the spontaneous, resting state activity of 700 subjects in the Human Connectome Project (HCP) and 122 subjects from the Restoring Active Memory (RAM) project using state-of-the-art linear and nonlinear model families. We assess relative model fit using predictive power, computational complexity, and the extent of residual dynamics unexplained by the model. Contrary to our expectations, linear auto-regressive models achieve the best measures across all three metrics. To understand and explain this linearity, we highlight four properties of macroscopic neurodynamics which can counteract or mask microscopic nonlinear dynamics: averaging over space, averaging over time, observation noise, and limited data samples. Whereas the latter two are technological limitations and can improve in the future, the former two are inherent to aggregated macroscopic brain activity. Our results demonstrate the discounted potential of linear models in accurately capturing macroscopic brain dynamics. This, together with the unparalleled interpretability of linear models, can greatly facilitate our understanding of macroscopic neural dynamics, which in turn may facilitate the principled design of model-based interventions for the treatment of neuropsychiatric disorders.
Competing Interest Statement
The authors have declared no competing interest.
Footnotes
* https://github.com/enozari/rest-system-id
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer