Abstract

Abstract

Quantifying the similarity between artificial neural networks (ANNs) and their biological counterparts is an important step towards building more brain-like artificial intelligence systems. Recent efforts in this direction use neural predictivity, or the ability to predict the responses of a biological brain given the information in an ANN (such as its internal activations), when both are presented with the same stimulus. We propose a new approach to quantifying neural predictivity by explicitly mapping the activations of an ANN to brain responses with a nonlinear function, and measuring the error between the predicted and actual brain responses. Further, we propose to use a neural network to approximate this mapping function by training it on a set of neural recordings. The proposed method was implemented within the Tensorflow framework and evaluated on a suite of 8 state-of-the-art image recognition ANNs. Our experiments suggest that the use of a non-linear mapping function leads to higher neural predictivity. Our findings also reaffirm the observation that the latest advances in classification performance of image recognition ANNs are not matched by improvements in their neural predictivity. Finally, we examine the impact of pruning, a widely used ANN optimization, on neural predictivity, and demonstrate that network sparsity leads to higher neural predictivity.

Competing Interest Statement

The authors have declared no competing interest.

Details

Title
Quantifying the Brain Predictivity of Artificial Neural Networks with Nonlinear Response Mapping
Author
Anand, Aditi; Sen, Sanchari; Kaushik, Roy
University/institution
Cold Spring Harbor Laboratory Press
Section
New Results
Publication year
2020
Publication date
Sep 28, 2020
Publisher
Cold Spring Harbor Laboratory Press
ISSN
2692-8205
Source type
Working Paper
Language of publication
English
ProQuest document ID
2508125801
Copyright
© 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.