Full Text

Turn on search term navigation

Copyright © 2021 Yu Sang et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Convolutional neural network- (CNN-) based deep learning (DL) architectures have achieved great success in many fields such as remote sensing, medical image processing, and computer vision. Recently, CNN-based models have also been attempted to solve geophysical problems. This paper presents a noise attenuation method of seismic data via a novel deep learning (DL) architecture, namely, deep multiscale fusion network (MSFN). Firstly, we integrate multiscale fusion (MSF) block to adaptively exploit local signal features at different scales from seismic data. And then, a series of stacked MSF blocks are formed into MSFN, which can restore the noisy seismic data effectively and preserve more useful signal information. Furthermore, a comparative study of our method and other leading edge ones is conducted by using synthetic seismic records and the SEG/EAGE salt and overthrust models. The results qualitatively and quantitatively show the capability of our method of achieving higher peak signal-to-noise ratios (PSNRs) while preserving much more useful information, comparing with other methods. Finally, our method is utilized in the real seismic data processing, obtaining satisfactory results.

Details

Title
Noise Attenuation of Seismic Data via Deep Multiscale Fusion Network
Author
Yu, Sang 1   VIAFID ORCID Logo  ; Sun, Jinguang 1 ; Gao, Dacheng 2 ; Wu, Hao 2 

 School of Electronic and Information Engineering, Liaoning Technical University, Huludao 125105, China 
 Exploration and Development Research Institute, Liaohe Oilfield of CNPC, Panjin 124010, China 
Editor
Xiaojie Wang
Publication year
2021
Publication date
2021
Publisher
John Wiley & Sons, Inc.
e-ISSN
15308677
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2508266009
Copyright
Copyright © 2021 Yu Sang et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.