It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Liquid metal (LM) has potential applications in flexible electronics due to its high electrical conductivity and high flexibility. However, common methods of printing LM circuits on soft substrates lack controllability, precision, and the ability to repair a damaged circuit. In this paper, we propose a method that uses a magnetic field to guide a magnetic LM (MLM) droplet to print and repair a flexible LM circuit on a femtosecond (fs) laser-patterned silicone surface. After mixing magnetic iron (Fe) particles into LM, the movement of the resultant MLM droplet could be controlled by a magnetic field. A patterned structure composed of the untreated flat domain and the LM-repellent rough microstructure produced by fs laser ablation was prepared on the silicone substrate. As an MLM droplet was guided onto the designed pattern, a soft LM circuit with smooth, uniform, and high-precision LM lines was obtained. Interestingly, the MLM droplet could also be guided to repair the circuit broken LM lines, and the repaired circuit maintained its original electrical properties. A flexible tensile sensor was prepared based on the printed LM circuit, which detected the bending degree of a finger.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China; The International Joint Research Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
2 State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China; The International Joint Research Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China