It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Guar gum is a polysaccharide that occurs naturally, and has useful properties in thickening and stabilizing. This makes it of interest in enhanced oil recovery, because of its ability to increase the sweep efficiency of the recovery process. Also, guar gum has an economical and reliable supply as well as flexible chemistry. Guar gum, however, cannot interact with oil-rock surface or the oil-water interface, thereby limiting its capacity to recover crude oil. Nanoparticles can, therefore, be mixed with guar gum to increase its recovery potential. Silicon oxide nanoparticles can be combined with a polymer to form a polymer nanocomposite, which can then be used to increase the overall efficiency of the crude oil recovery process. In this study, the viscosity profile of guar gum was investigated under different conditions of temperature and weight percentages. Four temperatures were investigated: 30, 50, 75, and 90°C. Six weight percentages were also investigated in the viscosity tests: 0.1, 0.2, 0.3, 0.4, 0.5, and 1. The oil recovery potential of guar gum and guar gum nanocomposite was also investigated at different weight percentages. Across the six weight percentages used in the viscosity study, it was observed that there was an average percentage loss in viscosity of 33 % as the temperature was increased from 30°C to 90°C at the highest shear rate of 1021 s-1. At 30°C, the viscosity of guar gum was seen to increase by close to 1000 % as weight percentage was increased from 0.1 to 1. The recovery factor observed during core flooding tests utilizing guar gum at three different concentrations indicated an increment of 48, 51, and 54% respectively. On addition of silicon oxide nanoparticles at different concentrations, oil recovery was enhanced by 54 % to 67.2 % OOIP. This validates the recovery potential of guar gum for enhanced oil recovery.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Chemical Engineering, Covenant University, Ota, Ogun State, Nigeria
2 Department of Petroleum Engineering, Covenant University, Ota, Ogun State, Nigeria