Abstract

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

Details

Title
Publisher Correction: A machine learning approach for reliable prediction of amino acid interactions and its application in the directed evolution of enantioselective enzymes
Author
Cadet Frédéric 1 ; Fontaine, Nicolas 1 ; Li, Guangyue 2 ; Sanchis Joaquin 3 ; Chong Matthieu Ng Fuk 4 ; Pandjaitan Rudy 4 ; Vetrivel Iyanar 4   VIAFID ORCID Logo  ; Offmann Bernard 5 ; Reetz, Manfred T 6 

 PEACCEL, Protein Engineering Accelerator, Paris, France 
 Philipps-University, Department of Chemistry, Marburg, Germany (GRID:grid.10253.35) (ISNI:0000 0004 1936 9756) 
 Monash University, Faculty of Pharmacy and Pharmaceutical Sciences, Parkville, Australia (GRID:grid.1002.3) (ISNI:0000 0004 1936 7857) 
 PEACCEL, Protein Engineering Accelerator, Paris, France (GRID:grid.1002.3) 
 Université de Nantes, UFIP, UMR 6286 CNRS, UFR Sciences et Techniques, Nantes, France (GRID:grid.4817.a) 
 Philipps-University, Department of Chemistry, Marburg, Germany (GRID:grid.10253.35) (ISNI:0000 0004 1936 9756); Max-Planck-Institut Fuer Kohlenforschung, Mülheim, Germany (GRID:grid.419607.d) (ISNI:0000 0001 2096 9941) 
Publication year
2021
Publication date
2021
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2511563887
Copyright
© The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.