Abstract

Image-based tracking of medical instruments is an integral part of surgical data science applications. Previous research has addressed the tasks of detecting, segmenting and tracking medical instruments based on laparoscopic video data. However, the proposed methods still tend to fail when applied to challenging images and do not generalize well to data they have not been trained on. This paper introduces the Heidelberg Colorectal (HeiCo) data set - the first publicly available data set enabling comprehensive benchmarking of medical instrument detection and segmentation algorithms with a specific emphasis on method robustness and generalization capabilities. Our data set comprises 30 laparoscopic videos and corresponding sensor data from medical devices in the operating room for three different types of laparoscopic surgery. Annotations include surgical phase labels for all video frames as well as information on instrument presence and corresponding instance-wise segmentation masks for surgical instruments (if any) in more than 10,000 individual frames. The data has successfully been used to organize international competitions within the Endoscopic Vision Challenges 2017 and 2019.

Measurement(s)

colorectum

Technology Type(s)

Laparoscopy

Factor Type(s)

surgery type

Sample Characteristic - Organism

Homo sapiens

Machine-accessible metadata file describing the reported data: https://doi.org/10.6084/m9.figshare.14178773

Details

Title
Heidelberg colorectal data set for surgical data science in the sensor operating room
Author
Maier-Hein, Lena 1   VIAFID ORCID Logo  ; Wagner, Martin 2   VIAFID ORCID Logo  ; Ross, Tobias 3   VIAFID ORCID Logo  ; Reinke Annika 3 ; Bodenstedt, Sebastian 4 ; Full, Peter M 5 ; Hempe Hellena 1 ; Mindroc-Filimon Diana 1 ; Scholz, Patrick 6 ; Tran, Thuy Nuong 1 ; Bruno Pierangela 7   VIAFID ORCID Logo  ; Kisilenko Anna 2 ; Müller, Benjamin 2 ; Davitashvili Tornike 2 ; Capek Manuela 2 ; Tizabi, Minu D 1 ; Eisenmann Matthias 1 ; Adler, Tim J 1 ; Gröhl Janek 1   VIAFID ORCID Logo  ; Schellenberg, Melanie 1 ; Seidlitz, Silvia 6 ; Lai T Y Emmy 8 ; Pekdemir Bünyamin 1 ; Veith, Roethlingshoefer 9 ; Both, Fabian 10 ; Bittel, Sebastian 11 ; Mengler, Marc 12 ; Mündermann Lars 13 ; Apitz, Martin 2 ; Kopp-Schneider, Annette 14 ; Speidel, Stefanie 15 ; Nickel, Felix 2   VIAFID ORCID Logo  ; Probst Pascal 2   VIAFID ORCID Logo  ; Kenngott, Hannes G 2 ; Müller-Stich, Beat P 2 

 Division of Computer Assisted Medical Interventions (CAMI), German Cancer Research Center (DKFZ), Heidelberg, Germany (GRID:grid.7497.d) (ISNI:0000 0004 0492 0584) 
 Heidelberg University Hospital, Department for General, Visceral and Transplantation Surgery, Heidelberg, Germany (GRID:grid.5253.1) (ISNI:0000 0001 0328 4908) 
 Division of Computer Assisted Medical Interventions (CAMI), German Cancer Research Center (DKFZ), Heidelberg, Germany (GRID:grid.7497.d) (ISNI:0000 0004 0492 0584); Heidelberg University, Heidelberg, Germany (GRID:grid.7700.0) (ISNI:0000 0001 2190 4373) 
 Division of Translational Surgical Oncology, National Center for Tumor Diseases, Partner Site Dresden, Dresden, Germany (GRID:grid.461742.2) 
 Heidelberg University, Heidelberg, Germany (GRID:grid.7700.0) (ISNI:0000 0001 2190 4373); Division of Medical Image Computing (MIC), Heidelberg, Germany (GRID:grid.7700.0) 
 Division of Computer Assisted Medical Interventions (CAMI), German Cancer Research Center (DKFZ), Heidelberg, Germany (GRID:grid.7497.d) (ISNI:0000 0004 0492 0584); HIDSS4Health – Helmholtz Information and Data Science School for Health, Heidelberg, Germany (GRID:grid.7497.d) 
 Division of Computer Assisted Medical Interventions (CAMI), German Cancer Research Center (DKFZ), Heidelberg, Germany (GRID:grid.7497.d) (ISNI:0000 0004 0492 0584); University of Calabria, Via Pietro Bucci, 87036 Arcavacata, Department of Mathematics and Computer Science, Rende, Italy (GRID:grid.7778.f) (ISNI:0000 0004 1937 0319) 
 Division of Medical Image Computing (MIC), Heidelberg, Germany (GRID:grid.7497.d) 
 understandAI GmbH, Karlsruhe, Germany (GRID:grid.7497.d) 
10  understandAI GmbH, Karlsruhe, Germany (GRID:grid.7497.d); University of Tuebingen, Geschwister-Scholl-Platz, International Max Planck Research School for Intelligent Systems Tuebingen, Tübingen, Germany (GRID:grid.10392.39) (ISNI:0000 0001 2190 1447) 
11  understandAI GmbH, Karlsruhe, Germany (GRID:grid.10392.39); BMW Group, Munich, Germany (GRID:grid.482868.8) (ISNI:0000 0001 0661 3914) 
12  understandAI GmbH, Karlsruhe, Germany (GRID:grid.482868.8) 
13  Corporate Research & Technology, Data-Assisted Solutions, KARL STORZ SE & Co. KG, Tuttlingen, Germany (GRID:grid.425567.7) (ISNI:0000 0004 0538 3936) 
14  Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany (GRID:grid.7497.d) (ISNI:0000 0004 0492 0584) 
15  Division of Translational Surgical Oncology, National Center for Tumor Diseases, Partner Site Dresden, Dresden, Germany (GRID:grid.461742.2); Centre for Tactile Internet with Human-in-the-Loop (CeTI), TU Dresden, Dresden, Germany (GRID:grid.4488.0) (ISNI:0000 0001 2111 7257) 
Publication year
2021
Publication date
2021
Publisher
Nature Publishing Group
e-ISSN
20524463
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2511564908
Copyright
© The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.