It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Metal-organic frameworks (MOFs) are promising photocatalytic materials due to their high surface area and tuneability of their electronic structure. We discuss here how to engineer the band structures and optical properties of a family of two-dimensional porphyrin-based MOFs, consisting of M-tetrakis(4-carboxyphenyl)porphyrin structures (M-TCPP, where M = Zn or Co) and metal (Co, Ni, Cu or Zn) paddlewheel clusters, with the aim of optimising their photocatalytic behaviour in solar fuel synthesis reactions (water-splitting and/or CO2 reduction). Based on density functional theory (DFT) and time-dependent DFT simulations with a hybrid functional, we studied three types of composition/structural modifications: (a) varying the metal centre at the paddlewheel or at the porphyrin centre to modify the band alignment; (b) partially reducing the porphyrin unit to chlorin, which leads to stronger absorption of visible light; and (c) substituting the benzene bridging between the porphyrin and paddlewheel, by ethyne or butadiyne bridges, with the aim of modifying the linker to metal charge transfer behaviour. Our work offers new insights on how to improve the photocatalytic behaviour of porphyrin- and paddlewheel-based MOFs.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details





1 Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6DX, United Kingdom
2 School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
3 Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, Ctra.de Utrera km.1, Seville 41013, Spain