Full Text

Turn on search term navigation

© 2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background: Existing bacterial culture test results for infectious diseases are written in unrefined text, resulting in many problems, including typographical errors and stop words. Effective spelling correction processes are needed to ensure the accuracy and reliability of data for the study of infectious diseases, including medical terminology extraction. If a dictionary is established, spelling algorithms using edit distance are efficient. However, in the absence of a dictionary, traditional spelling correction algorithms that utilize only edit distances have limitations.

Objective: In this research, we proposed a similarity-based spelling correction algorithm using pretrained word embedding with the BioWordVec technique. This method uses a character-level N-grams–based distributed representation through unsupervised learning rather than the existing rule-based method. In other words, we propose a framework that detects and corrects typographical errors when a dictionary is not in place.

Methods: For detected typographical errors not mapped to Systematized Nomenclature of Medicine (SNOMED) clinical terms, a correction candidate group with high similarity considering the edit distance was generated using pretrained word embedding from the clinical database. From the embedding matrix in which the vocabulary is arranged in descending order according to frequency, a grid search was used to search for candidate groups of similar words. Thereafter, the correction candidate words were ranked in consideration of the frequency of the words, and the typographical errors were finally corrected according to the ranking.

Results: Bacterial identification words were extracted from 27,544 bacterial culture and antimicrobial susceptibility reports, and 16 types of spelling errors and 914 misspelled words were found. The similarity-based spelling correction algorithm using BioWordVec proposed in this research corrected 12 types of typographical errors and showed very high performance in correcting 97.48% (based on F1 score) of all spelling errors.

Conclusions: This tool corrected spelling errors effectively in the absence of a dictionary based on bacterial identification words in bacterial culture and antimicrobial susceptibility reports. This method will help build a high-quality refined database of vast text data for electronic health records.

Details

Title
Similarity-Based Unsupervised Spelling Correction Using BioWordVec: Development and Usability Study of Bacterial Culture and Antimicrobial Susceptibility Reports
Author
Kim, Taehyeong  VIAFID ORCID Logo  ; Han, Sung Won  VIAFID ORCID Logo  ; Kang, Minji  VIAFID ORCID Logo  ; Se Ha Lee  VIAFID ORCID Logo  ; Jong-Ho, Kim  VIAFID ORCID Logo  ; Joo, Hyung Joon  VIAFID ORCID Logo  ; Sohn, Jang Wook  VIAFID ORCID Logo 
Section
Natural Language Processing
Publication year
2021
Publication date
Feb 2021
Publisher
JMIR Publications
e-ISSN
22919694
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2511974773
Copyright
© 2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.