It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In deep learning-based object detection, especially in face detection, small target and small face has always been a practical and common difficult problem due to its low resolution, blurred image, less information and more noise. In some applications, sensing image data is hard to collect, leading to limited object detection performance. In this paper, we investigate using a generative adversarial network model to augment data for object detection in images. We use generative adversarial network to generate the diverse objects based on the current image data. An improved generative adversarial network is added in the network and a new loss funtion is applied during the trianing process to generate diverse and high-quality traing images. Experiments show that images generated by generative adversarial network have higher quality than counterparts.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Information and Communication Company of State Grid Sichuan Electric Power Company, Chengdu, Sichuan Province, 610041, China