Abstract

In deep learning-based object detection, especially in face detection, small target and small face has always been a practical and common difficult problem due to its low resolution, blurred image, less information and more noise. In some applications, sensing image data is hard to collect, leading to limited object detection performance. In this paper, we investigate using a generative adversarial network model to augment data for object detection in images. We use generative adversarial network to generate the diverse objects based on the current image data. An improved generative adversarial network is added in the network and a new loss funtion is applied during the trianing process to generate diverse and high-quality traing images. Experiments show that images generated by generative adversarial network have higher quality than counterparts.

Details

Title
Improved Object Detection using Data Enhancement method based on Generative Adversarial Nets
Author
Zhang Ruiqiang 1 ; Liu Jiajia 1 ; Zeng, Yu 1 ; Pan Kejia 1 ; Huang, Lin 1 

 Information and Communication Company of State Grid Sichuan Electric Power Company, Chengdu, Sichuan Province, 610041, China 
Publication year
2021
Publication date
Mar 2021
Publisher
IOP Publishing
ISSN
17426588
e-ISSN
17426596
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2512916879
Copyright
© 2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.