It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Precipitation is changing as the climate warms, and downpours can become more intense due to the increased water holding capacity of the atmosphere. However, the exact nature of the precipitation response and its characteristics is still not well understood due to the complex nature of the physical processes underlying the formation of clouds and precipitation. In this study, present and future Norwegian climate is simulated at convection-permitting scales with a regional climate model. The future climate is a high emission scenario at the middle of the century. Hourly precipitation is separated into three categories (convective, stratiform, and orographically enhanced stratiform) using a physically-based algorithm. We investigate changes in the frequency, intensity and duration of precipitation events for each category, delivering a more nuanced insight into the precipitation response to a changing climate. Results show very strong seasonality, with significant intensification of autumn precipitation. An increase in convective precipitation frequency and intensity dominates the climate change signal regardless of season. While changes in winter and summer are well explained by thermodynamical theory, the precipitation response in autumn and spring deviates from the idealised thermodynamic response, partly owing to changes in cloud microphysics. These results show that changes in the precipitation distribution are affected in complex ways by the local climatology, terrain, seasonality and cloud processes. They illustrate the need for further and more detailed investigations about physical processes underlying projected precipitation changes and their seasonal and regional dependence.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer