It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Electrochemical grafting is a suitable technology for fabricating electrode surfaces with new chemical functionalities whilst maintaining the bulk properties of the electrode, and electrochemical amine oxidation and diazonium salt reduction are two widely used techniques to achieve this end. Herein, we report the electrochemical reductive grafting of Azure A onto multiwalled carbon nanotube (MWCNT) electrodes for the efficient wiring of flavin adenine dinucleotide (FAD) dependent glucose dehydrogenase. The diazonium salt of Azure A is formed in situ and subsequently grafted onto the electrode surface through electrochemical reduction. The formal potential of the resultant Azure-A-modified electrode shifted to −0.05 V vs. Ag/AgCl upon radical coupling to the MWCNT electrode. Electron transfer from FAD buried in the protein shell to the electrode via Azure A was then observed in the presence of glucose in the buffer solution. This study focused on the important effect of CNT mass loading on Azure-A loading as well as bioelectrocatalytic activity and storage stability. The three-dimensional porous structure of the MWCNT electrode was determined to be favorable for the immobilization of flavin adenine dinucleotide dependent glucose dehydrogenase and efficient electron transfer via the Azure-A functionalities. The optimized 300 µg CNT-loaded modified electrode on glassy carbon (3 mm diameter) retains its initial activity for 3 d and 25% of its initial activity after 10 d. Furthermore, we show that grafted Azure A is stably immobilized on the MWCNTs for 1 month; therefore, the limiting stability factor is enzyme leaching and/or deactivation.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details


1 Division of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
2 Department of Molecular Chemistry, UMR CNRS-UGA 5250, Universiteé Grenoble Alpes, Grenoble 38000, France