It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Rationally designing and precisely constructing the dimensions, configurations and compositions of organic nanomaterials are key issues in material chemistry. Nevertheless, the precise synthesis of organic heterostructure nanomaterials remains challenging owing to the difficulty of manipulating the homogeneous/heterogeneous-nucleation process and the complex epitaxial relationships of combinations of dissimilar materials. Herein, we propose a hierarchical epitaxial-growth approach with the combination of longitudinal and horizontal epitaxial-growth modes for the design and synthesis of a variety of organic superstructure microwires with accurate spatial organisation by regulating the heterogeneous-nucleation crystallisation process. The lattice-matched longitudinal and horizontal epitaxial-growth modes are separately employed to construct the primary organic core/shell and segmented heterostructure microwires. Significantly, these primary organic core/shell and segmented microwires are further applied to construct the core/shell-segmented and segmented-core/shell type’s organic superstructure microwires through the implementation of multiple spatial epitaxial-growth modes. This strategy can be generalised to all organic microwires with tailored multiple substructures, which affords an avenue to manipulate their physical/chemical features for various applications.
Rationally designing and precisely constructing the dimensions, configurations and compositions of organic micro- and nanomaterials are key issues in material chemistry, but remain challenging. Here, the authors realize the fine synthesis of organic superstructure microwires via a hierarchical epitaxial-growth approach.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Soochow University, Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Suzhou, P. R. China (GRID:grid.263761.7) (ISNI:0000 0001 0198 0694)
2 Soochow University, Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Suzhou, P. R. China (GRID:grid.263761.7) (ISNI:0000 0001 0198 0694); Institute of Organic Optoelectronics, JITRI, Wujiang, Suzhou, P. R. China (GRID:grid.263761.7)