It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Arctic tundra exhibits large landscape heterogeneity in microtopography, hydrology, and active layer depth. While many carbon flux measurements and experiments are done at or below the mesoscale (⩽1 km), modern ecosystem carbon modeling is often done at scales of 0.25°–1.0° latitude, creating a mismatch between processes, process input data, and verification data. Here we arrange the naturally complex terrain into mesoscale landscape types of varying microtopography and moisture status to evaluate how landscape types differ in terms of CO2 and CH4 balances and their combined warming potential, expressed as CO2 equivalents (CO2-eq). Using a continuous 4 year dataset of CO2 and CH4 fluxes obtained from three eddy covariance (EC) towers, we investigate the integrated dynamics of landscape type, vegetation community, moisture regime, and season on net CO2 and CH4 fluxes. EC towers were situated across a moisture gradient including a moist upland tundra, a heterogeneous polygon tundra, and an inundated drained lake basin. We show that seasonal shifts in carbon emissions buffer annual carbon budget differences caused by site variability. Of note, high growing season gross primary productivity leads to higher fall zero-curtain CO2 emissions, reducing both variability in annual budgets and carbon sink strength of more productive sites. Alternatively, fall zero-curtain CH4 emissions are equal across landscape types, indicating site variation has little effect on CH4 emissions during the fall despite large differences during the growing season. We find that the polygon site has the largest mean warming potential (107 ± 8.63 g C–CO2-eq m−2 yr−1) followed by the drained lake basin site (82.12 ± 9.85 g C–CO2-eq m−2 yr−1) and the upland site (77.19 ± 21.8 g C–CO2-eq m−2 yr−1), albeit differences were not significant. The highest temperature sensitivities are also at the polygon site with mixed results between CO2 and CH4 at the other sites. Results show a similar mean annual net warming effect across dominant landscape types but that these landscape types vary significantly in the amounts and timing of CO2 and CH4 fluxes.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details




1 Department of Land, Air and Water Resources, University of California at Davis, Davis, United States of America; Biology Department, San Diego State University, San Diego, United States of America
2 Biology Department, San Diego State University, San Diego, United States of America; Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
3 Earth Systems Research Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, United States of America
4 GFZ German Research Centre for Geosciences, Potsdam, Germany
5 Biology Department, San Diego State University, San Diego, United States of America; Department of Geography, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom