It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Classical image processing methods demands heavy feature engineering, as well as they are not that precise, when it comes to manual extraction of relevant features in real life scenarios amid to various lighting conditions and other factors.Thus, detection of cracks using methods based on classical image processing techniques fails to provide satisfactory results always. Hence, we have proposed a deep convolutional neural network, that is not based on manual extraction of features as mentioned above. We proposed a modified U-Net architecture, and replaced all of its convolutional layers with residual blocks, inspired from the ResNet architecture. For evaluation of our model Dice Loss is used as our objective function and F1 score as a metric. Other than that, for better convergence and optimization, a learning rate scheduler and AMSGRAD optimizer was utilized.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 College of Engineering and Management, Kolaghat