It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
With the rapid development of electronic sensor and actuator technology, semi-active seat suspension system has become even more practical driven by lower power consumption. Magneto-rheological (MR) dampers are among the best and the most reliable semi active control devices that can produce controllable damping force in seat suspension system to further improve the ride comfort. This paper focus on a new controller scheme named Active Force Control (AFC) to control the damping force of the MR damper to achieve better ride comfort. The phenomenological Bouc-Wen model for MR damper has been simulated in Matlab Simulink to study the effectiveness of the new AFC controller. A sinusoidal signal simulated as vibration source is applied to the seat suspension system to investigate the improvement of ride comfort as well as to ascertain the new AFC controller robustness. Comparison of body acceleration signals from the passive suspension with AFC controller semi active seat suspension system shows improvement to the occupant ride comfort under different vibration intensities.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Advanced Structural Integrity and Vibration Research Group, Faculty of Mechanical Engineering, Faculty of Mechanical Engineering, Universiti Malaysia Pahang (UMP), 26600 UMP Pekan, Pahang, Malaysia
2 Teknik Elektro, Universitas Widyagama, Malang, Indonesia