It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Satellite radar backscatter has the potential to provide useful information about the progression of volcanic eruptions when optical, ground-based, or radar phase-based measurements are limited. However, backscatter changes are complex and challenging to interpret: explosive deposits produce different signals depending on pre-existing ground cover, radar parameters and eruption characteristics. We use high temporal- and spatial-resolution backscatter imagery to examine the emplacement and alteration of pyroclastic flows, lahars, and ash from the June 2018 eruption of Volcan de Fuego, Guatemala, drawing on observatory reports and rain gauge data to ground truth our observations. We use dense timeseries of backscatter to reduce noise and extract deposit areas. Backscatter decreases where six flows were emplaced on 3 June 2018. In Barranca Las Lajas, we measured a 11.9-km-long flow that altered an area of 6.3 km2; and used radar shadows to estimate a thickness of 10.5 +/- 2 m in the lower sections. The 3 June eruption also changed backscatter over an area of 40 km2, consistent with ashfall. We use transient patterns in backscatter timeseries to identify nine periods of high lahar activity in B. Las Lajas between June and October 2018. We find that the characterisation of subtle backscatter signals associated with explosive eruptions is assisted by (1) radiometric terrain calibration, (2) speckle correction, and (3) consideration of pre-existing scattering properties. Our observations demonstrate that SAR backscatter can capture both the emplacement and subsequent alteration of a range of explosive products, allowing the progression of an explosive eruption to be monitored.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer