Content area

Abstract

Machine learning has been increasingly used as a first line of defense for Windows malware detection. Recent work has however shown that learning-based malware detectors can be evaded by carefully-perturbed input malware samples, referred to as adversarial EXEmples, thus demanding for tools that can ease and automate the adversarial robustness evaluation of such detectors. To this end, we present secml-malware, the first Python library for computing adversarial attacks on Windows malware detectors. secml-malware implements state-of-the-art white-box and black-box attacks on Windows malware classifiers, by leveraging a set of feasible manipulations that can be applied to Windows programs while preserving their functionality. The library can be used to perform the penetration testing and assessment of the adversarial robustness of Windows malware detectors, and it can be easily extended to include novel attack strategies. Our library is available at https://github.com/pralab/secml_malware.

Details

1009240
Identifier / keyword
Title
secml-malware: Pentesting Windows Malware Classifiers with Adversarial EXEmples in Python
Publication title
arXiv.org; Ithaca
Publication year
2024
Publication date
Dec 13, 2024
Section
Computer Science
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2024-12-16
Milestone dates
2021-04-26 (Submission v1); 2021-07-29 (Submission v2); 2024-12-13 (Submission v3)
Publication history
 
 
   First posting date
16 Dec 2024
ProQuest document ID
2519157086
Document URL
https://www.proquest.com/working-papers/secml-malware-pentesting-windows-classifiers-with/docview/2519157086/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2024-12-17
Database
ProQuest One Academic