It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Motivated by the importance of antiferromagnetic skyrmions as building blocks of next-generation data storage and processing devices, we report theoretical and computational analysis of a model for a spin-orbit coupled correlated Hund’s insulator magnet on a triangular lattice. We find that two distinct antiferromagnetic skyrmion crystal (AF-SkX) states can be stabilized at low temperatures in the presence of external magnetic field. The results are obtained via Monte Carlo simulations on an effective magnetic model derived from the microscopic electronic Hamiltonian consisting of Rashba spin-orbit coupling, as well as strong Hund’s coupling of electrons to classical spins at half-filling. The two AF-SkX phases are understood to originate from a classical spin liquid state that exists at low but finite temperatures. These AF-SkX states can be easily distinguished from each other in experiments as they are characterized by peaks at distinct momenta in the spin structure factor which is directly measured in neutron scattering experiments. We also discuss examples of materials where the model as well as the two AF-SkX states can be realized.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Indian Institute of Science Education and Research (IISER) Mohali, Department of Physical Sciences, Manauli, India (GRID:grid.458435.b) (ISNI:0000 0004 0406 1521)