It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Trimethylglycine (TMG) is a cheap, natural, and highly biocompatible compound. Therefore, it has been used in the fields of food and life sciences, but the application of solid TMG is limited to utilisation as an “additive”. In the present study, we focussed on the high solubility of TMG in water, derived from the aprotic zwitterionic structure, and proposed TMG as the chemical accounting for a major portion of the aqueous solution (e.g., 50 wt%). High loading of TMG shifted the properties of water and enabled the dissolution of poorly water-soluble cisplatin, an anticancer agent, at high concentration (solubility of cisplatin: 0.15 wt% in water vs 1.7 wt% in TMG aqueous solution). For hepatic arterial infusion, this can reduce the amount of cisplatin administered from 40 to 4 mL. It enables simple injection using a syringe, without the need for catheters and automatic pumps, leading to critical alleviation of the risk to patients. Furthermore, we produced a dry powder from a cisplatin-containing TMG aqueous solution via freeze-drying. Powders can be conveniently stored and transported. Furthermore, cisplatin is often used as a mixture with other drugs, and cisplatin aqueous solutions are not preferred as they dilute the other drugs.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Kanazawa University, Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa, Japan
2 Cancer Research Institute of Kanazawa University, Division of Tumor Cell Biology and Bioimaging, Kanazawa, Japan
3 Kanazawa University, Institute for Frontier Science Initiative, Kanazawa, Japan
4 Cancer Research Institute of Kanazawa University, Division of Tumor Cell Biology and Bioimaging, Kanazawa, Japan; Nano Life Science Institute of Kanazawa University, Kanazawa, Japan