Full text

Turn on search term navigation

Copyright © 2021 Juanjuan Shi. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/

Abstract

This paper proposes a personalized music recommendation method based on multidimensional time-series analysis, which can improve the effect of music recommendation by using user’s midterm behavior reasonably. This method uses the theme model to express each song as the probability of belonging to several hidden themes, then models the user’s behavior as multidimensional time series, and analyzes the series so as to better predict the use of music users’ behavior preference and give reasonable recommendations. Then, a music recommendation method is proposed, which integrates the long-term, medium-term, and real-time behaviors of users and considers the dynamic adjustment of the influence weight of the three behaviors so as to further improve the effect of music recommendation by adopting the advanced long short time memory (LSTM) technology. Through the implementation of the prototype system, the feasibility of the proposed method is preliminarily verified.

Details

Title
Music Recommendation Algorithm Based on Multidimensional Time-Series Model Analysis
Author
Shi, Juanjuan 1   VIAFID ORCID Logo 

 ZhongShan Polytechnic, Zhongshan, Guangdong 528400, China 
Editor
Zhihan Lv
Publication year
2021
Publication date
2021
Publisher
John Wiley & Sons, Inc.
ISSN
10762787
e-ISSN
10990526
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2524023566
Copyright
Copyright © 2021 Juanjuan Shi. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/