Full Text

Turn on search term navigation

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Because of mercury’s (Hg) capacity for long-range transport in the atmosphere, and its tendency to bioaccumulate in aquatic biota, there is a critical need to measure spatial and temporal patterns of Hg atmospheric deposition. Dry deposition of Hg is commonly calculated as the product of a measured atmospheric concentration and an assumed deposition velocity. An alternative is to directly assess Hg deposition via accumulation on surrogate surfaces. Using a direct measurement approach, this study quantified Hg deposition at a rural site (Pullman) and suburban site (Puyallup) in Washington State using simple, low-cost equipment. Dry deposition was measured using an aerodynamic “wet sampler” consisting of a Teflon plate, 35 cm in diameter, holding a thin layer (2.5 mm) of recirculating acidic aqueous receiving solution. In addition, wet Hg deposition was measured using a borosilicate glass funnel with a 20-cm-diameter opening and a 1 L Teflon sampling bottle. Hg deposition was estimated based on changes in total Hg in the aqueous phase of the samplers. Dry Hg deposition was 2.4 ± 1.4 ng/m2·h (average plus/minus standard deviation; n = 4) in Pullman and 1.3 ± 0.3 ng/m2·h (n = 6) in Puyallup. Wet Hg deposition was 7.0 ± 4.8 ng/m2·h (n = 4) in Pullman and 1.1 ± 0.2 ng/m2·h (n = 3) in Puyallup. Relatively high rates of Hg deposition in Pullman were attributed to regional agricultural activities that enhance mercury re-emission and deposition including agricultural harvesting and field burning. Hg concentration in precipitation negatively correlated with precipitation depth, indicating that Hg was scavenged from the atmosphere during the beginning of storm events. Because of their relative simplicity and robustness, direct measurement approaches such as those described in this study are useful in assessing Hg deposition, and for comparing results to less direct estimates and model estimates of Hg deposition.

Details

Title
Direct Measurement of Mercury Deposition at Rural and Suburban Sites in Washington State, USA
Author
Beutel, Marc W 1 ; DeSilva, Lanka 2 ; Amegbletor, Louis 3   VIAFID ORCID Logo 

 Department of Civil and Environmental Engineering and Environmental Systems Graduate Group, University of California, Merced, CA 95343, USA 
 Department of Civil and Environmental Engineering, Washington State University, Pullman, WA 99164, USA; [email protected] 
 Environmental Systems Graduate Group, University of California, Merced, CA 95343, USA; [email protected] 
First page
35
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20734433
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2524458788
Copyright
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.