Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Featured Application

The method in this paper aims to select effective subregions, reduce the amount of calculation and maintain the accuracy of visibility estimation.

Abstract

Meteorological visibility is an important meteorological observation indicator to measure the weather transparency which is important for the transport safety. It is a challenging problem to estimate the visibilities accurately from the image characteristics. This paper proposes a transfer learning method for the meteorological visibility estimation based on image feature fusion. Different from the existing methods, the proposed method estimates the visibility based on the data processing and features’ extraction in the selected subregions of the whole image and therefore it had less computation load and higher efficiency. All the database images were gray-averaged firstly for the selection of effective subregions and features extraction. Effective subregions are extracted for static landmark objects which can provide useful information for visibility estimation. Four different feature extraction methods (Densest, ResNet50, Vgg16, and Vgg19) were used for the feature extraction of the subregions. The features extracted by the neural network were then imported into the proposed support vector regression (SVR) regression model, which derives the estimated visibilities of the subregions. Finally, based on the weight fusion of the visibility estimates from the subregion models, an overall comprehensive visibility was estimated for the whole image. Experimental results show that the visibility estimation accuracy is more than 90%. This method can estimate the visibility of the image, with high robustness and effectiveness.

Details

Title
A Transfer Learning Method for Meteorological Visibility Estimation Based on Feature Fusion Method
Author
Li, Jiaping 1   VIAFID ORCID Logo  ; Lo, Wai Lun 1 ; Fu, Hong 2 ; Henry Shu Hung Chung 3 

 Department of Computer Science, Chu Hai College of Higher Education, Hong Kong, China; [email protected] 
 Department of Mathematics and Information Technology, The Education University of Hong Kong, Hong Kong, China; [email protected] 
 Department of Electrical Engineering, City University of Hong Kong, Hong Kong, China; [email protected] 
First page
997
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2524471052
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.