Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Changing the water-to-cement ratio is one of the major ways to develop cement slurry with different densities, which in turn will greatly affect the pore structure and mechanical properties of cement slurry. In the current study, the cement hydration model HYMOSTRUC3D was used to investigate the effects of water-to-cement (w/c) ratio (0.40, 0.44, 0.50) on the pore structure evolution and strength development of cement slurry. The microstructure of the cement stone was characterized via scanning electron microscope (SEM) and micro-computed tomography (micro-CT), and the mechanical strength of the cement stone was tested and analyzed via a mechanical tester. The simulated compressive strength and capillary porosity are in good agreement with the measured data, where the relative error between the simulated results and measured results are within 0.6~10.7% and 13.04~25.31%, respectively. The capillary porosity is proved as the main factor affecting the compressive strength of cement stone with different w/c ratios. Herein, the mathematical relationship between the measured capillary porosity and compressive strength could be well fitted via the mathematical prediction models of the Balshin function (R2 = 0.95), Ryshkewitch function (R2 = 0.94), Schiller function (R2 = 0.96), and the linear regression function (R2 = 0.95). Moreover, the linear regression function (y = −2.38x + 82.76) can be used to characterize and predict the quantitative relationship between the compressive strength and capillary porosity of cement stone. The findings in this study will provide a reference value in the fields of oil and gas cementing and building concrete.

Details

Title
Effects of Water-to-Cement Ratio on Pore Structure Evolution and Strength Development of Cement Slurry Based on HYMOSTRUC3D and Micro-CT
Author
Zheng, Shaojun 1 ; Liu, Tianle 1 ; Jiang, Guosheng 1 ; Fang, Changliang 1 ; Qu, Bo 2   VIAFID ORCID Logo  ; Gao, Peng 3   VIAFID ORCID Logo  ; Li, Lixia 1 ; Feng, Yingtao 4 

 Faculty of Engineering, China University of Geosciences, Wuhan 430074, China; [email protected] (S.Z.); [email protected] (G.J.); [email protected] (C.F.); [email protected] (B.Q.); [email protected] (L.L.); Unconventional Cementing and Special Reinforcement Laboratory, China University of Geosciences, Wuhan 430074, China 
 Faculty of Engineering, China University of Geosciences, Wuhan 430074, China; [email protected] (S.Z.); [email protected] (G.J.); [email protected] (C.F.); [email protected] (B.Q.); [email protected] (L.L.) 
 School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China; [email protected] 
 Oilfield Chemistry Research and Development Institute, COSL, Sanhe 065201, China; [email protected] 
First page
3063
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2524473554
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.