Full Text

Turn on search term navigation

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Bioactive glass F18 (BGF18), a glass containing SiO2–Na2O–K2O–MgO–CaO–P2O5, is highly effective as an osseointegration buster agent when applied as a coating in titanium implants. Biocompatibility tests using this biomaterial exhibited positive results; however, its antimicrobial activity is still under investigation. In this study we evaluated biofilm formation and expression of virulence-factor-related genes in Candida albicans, Staphylococcus epidermidis, and Pseudomonas aeruginosa grown on surfaces of titanium and titanium coated with BGF18. C. albicans, S. epidermidis, and P. aeruginosa biofilms were grown on specimens for 8, 24, and 48 h. After each interval, the pH was measured and the colony-forming units were counted for the biofilm recovery rates. In parallel, quantitative real-time polymerase chain reactions were carried out to verify the expression of virulence-factor-related genes. Our results showed that pH changes of the culture in contact with the bioactive glass were merely observed. Reduction in biofilm formation was not observed at any of the studied time. However, changes in the expression level of genes related to virulence factors were observed after 8 and 48 h of culture in BGF18. BGF18 coating did not have a clear inhibitory effect on biofilm growth but promoted the modulation of virulence factors.

Details

Title
Biofilm Formation and Expression of Virulence Genes of Microorganisms Grown in Contact with a New Bioactive Glass
Author
Viviane de Cássia Oliveira 1   VIAFID ORCID Logo  ; Souza, Marina Trevelin 2 ; Edgar Dutra Zanotto 2   VIAFID ORCID Logo  ; Watanabe, Evandro 3   VIAFID ORCID Logo  ; Coraça-Huber, Débora 4   VIAFID ORCID Logo 

 Human Exposome and Infectious Diseases Network—HEID, School of Nursing of Ribeirão Preto, University of São Paulo, Bandeirantes Avenue 3900, Ribeirão Preto 14040-904, São Paulo, Brazil; [email protected] (V.d.C.O.); [email protected] (E.W.); Department of Dental Materials and Prostheses, School of Dentistry of Ribeirão Preto, University of São Paulo, Café Avenue S/N, Ribeirão Preto 14040-904, São Paulo, Brazil 
 Vitreous Materials Laboratory—LaMaV, Department of Materials Engineering, Federal University of São Carlos, Rod. Washington Luiz km 235, São Carlos 13565-905, São Paulo, Brazil; [email protected] (M.T.S.); [email protected] (E.D.Z.) 
 Human Exposome and Infectious Diseases Network—HEID, School of Nursing of Ribeirão Preto, University of São Paulo, Bandeirantes Avenue 3900, Ribeirão Preto 14040-904, São Paulo, Brazil; [email protected] (V.d.C.O.); [email protected] (E.W.); Department of Restorative Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Café Avenue S/N, Ribeirão Preto 14040-904, São Paulo, Brazil 
 Department of Orthopedic Surgery, Experimental Orthopedics, Medical University of Innsbruck, Peter‒Mayr-Strasse 4b, 6020 Innsbruck, Austria 
First page
927
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20760817
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2524524359
Copyright
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.