Full text

Turn on search term navigation

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Jordan is affected by an ever changing environment in the midst of climate change, political challenges, a fast growing economy and socio-economic pressures. Among other countries in the Middle East and Northern Africa, Jordan is facing a number of electricity related challenges, such as a rising energy demand, high dependency on fossil fuel imports and management of local, fossil and renewable resources. The paper presents an analysis based on an open source optimisation modelling approach identifying a cost-optimal extension of the Jordanian electricity system with growing demand projections until 2030 utilising pumped hydro energy storage and determining the costs of different CO2 mitigation pathways. The results highlight the large potential of renewable energy for the cost effective, environmentally friendly and energy independent development of the Jordanian electricity sector. A share of up to 50% renewable energy can be achieved with only a minor increase in levelised cost of electricity from 54.42 to 57.04 $/MWh. In particular, a combination of photovoltaic and pumped hydro storage proved to be a superior solution compared to the expansion of existing shale oil deployments due to high costs and CO2 emissions. Aiming for a more than 50% renewable energy share within the electricity mix calls for substantial wind energy deployments. In a system with a renewable energy share of 90%, wind energy covers 45% of the demand.

Details

Title
Analysis of Cost-Optimal Renewable Energy Expansion for the Near-Term Jordanian Electricity System
Author
Hilpert, Simon 1   VIAFID ORCID Logo  ; Dettner, Franziska 1 ; Al-Salaymeh, Ahmed 2   VIAFID ORCID Logo 

 Department of Energy and Environmental Management, Auf dem Campus 1, Europa Universität Flensburg, 24941 Flensburg, Germany; [email protected] 
 Mechanical Engineering Department, University of Jordan, Amman 11942, Jordan; [email protected] 
First page
9339
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2524902885
Copyright
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.