Abstract

Durability of high-energy throughput batteries is a prerequisite for electric vehicles to penetrate the market. Despite remarkable progresses in silicon anodes with high energy densities, rapid capacity fading of full cells with silicon–graphite anodes limits their use. In this work, we unveil degradation mechanisms such as Li+ crosstalk between silicon and graphite, consequent Li+ accumulation in silicon, and capacity depression of graphite due to silicon expansion. The active material properties, i.e. silicon particle size and graphite hardness, are then modified based on these results to reduce Li+ accumulation in silicon and the subsequent degradation of the active materials in the anode. Finally, the cycling performance is tailored by designing electrodes to regulate Li+ crosstalk. The resultant full cell with an areal capacity of 6 mAh cm−2 has a cycle life of >750 cycles the volumetric energy density of 800 Wh L−1 in a commercial cell format.

The degradation in silicon-graphite anodes is originated from Li ion crosstalk between silicon and graphite, and the pressure-induced staging transition of the graphite. Here, the authors demonstrate a prismatic cell with improved volumetric energy density and cycle stability by targeted solving above issues.

Details

Title
Interplay between electrochemical reactions and mechanical responses in silicon–graphite anodes and its impact on degradation
Author
Moon Junhyuk 1   VIAFID ORCID Logo  ; Lee Heung Chan 1   VIAFID ORCID Logo  ; Jung Heechul 2 ; Wakita Shinya 3 ; Cho Sungnim 3 ; Yoon Jaegu 3 ; Lee, Joowook 3 ; Ueda Atsushi 4 ; Choi Bokkyu 3 ; Lee, Sihyung 1 ; Ito Kimihiko 5 ; Kubo Yoshimi 5   VIAFID ORCID Logo  ; Lim, Alan Christian 6 ; Seo Jeong Gil 6 ; Yoo Jungho 7 ; Lee, Seungyeon 1 ; Ham Yongnam 1 ; Baek Woonjoong 1 ; Young-Gyoon, Ryu 3   VIAFID ORCID Logo  ; Han In Taek 1 

 Samsung Advanced Institute of Technology, Suwon-si, Korea (GRID:grid.419666.a) (ISNI:0000 0001 1945 5898) 
 Samsung Advanced Institute of Technology, Suwon-si, Korea (GRID:grid.419666.a) (ISNI:0000 0001 1945 5898); Dong-A University, Bumin Campus, Department of Energy and Mineral Resources Engineering, Seo-gu, Korea (GRID:grid.255166.3) (ISNI:0000 0001 2218 7142) 
 Samsung Advanced Institute of Technology, Suwon-si, Korea (GRID:grid.419666.a) (ISNI:0000 0001 1945 5898); Samsung SDI, Suwon-si, Korea (GRID:grid.419666.a) (ISNI:0000 0001 1945 5898) 
 Samsung Advanced Institute of Technology, Suwon-si, Korea (GRID:grid.419666.a) (ISNI:0000 0001 1945 5898); Asahi Kasei Corporation, Fuji-shi, Japan (GRID:grid.410859.1) (ISNI:0000 0001 2225 398X) 
 C4GR-GREEN, National Institute for Materials Science, Tsukuba, Japan (GRID:grid.21941.3f) (ISNI:0000 0001 0789 6880) 
 Hanyang University, Department of Chemical Engineering, Seongdong-gu, Korea (GRID:grid.49606.3d) (ISNI:0000 0001 1364 9317) 
 National NanoFab Center, Daejeon, Korea (GRID:grid.496766.c) (ISNI:0000 0004 0546 0225) 
Publication year
2021
Publication date
2021
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2525230302
Copyright
© The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.