Abstract

Magnetostrictive materials transduce magnetic and mechanical energies and when combined with piezoelectric elements, evoke magnetoelectric transduction for high-sensitivity magnetic field sensors and energy-efficient beyond-CMOS technologies. The dearth of ductile, rare-earth-free materials with high magnetostrictive coefficients motivates the discovery of superior materials. Fe1−xGax alloys are amongst the highest performing rare-earth-free magnetostrictive materials; however, magnetostriction becomes sharply suppressed beyond x = 19% due to the formation of a parasitic ordered intermetallic phase. Here, we harness epitaxy to extend the stability of the BCC Fe1−xGax alloy to gallium compositions as high as x = 30% and in so doing dramatically boost the magnetostriction by as much as 10x relative to the bulk and 2x larger than canonical rare-earth based magnetostrictors. A Fe1−xGax − [Pb(Mg1/3Nb2/3)O3]0.7−[PbTiO3]0.3 (PMN-PT) composite magnetoelectric shows robust 90° electrical switching of magnetic anisotropy and a converse magnetoelectric coefficient of 2.0 × 10−5 s m−1. When optimally scaled, this high coefficient implies stable switching at ~80 aJ per bit.

In this work, Meisenheimer et al. use careful epitaxial growth of FeGa thin films to achieve a metastable state with remarkably high magetostrictive coefficients. Materials with strong magnetostrictive properties are vital components in magnetoelectric multiferroic heterostructures, with considerable potential for use a variety of technologies.

Details

Title
Engineering new limits to magnetostriction through metastability in iron-gallium alloys
Author
Meisenheimer, P B 1   VIAFID ORCID Logo  ; Steinhardt, R A 2 ; Sung, S H 1   VIAFID ORCID Logo  ; Williams, L D 3   VIAFID ORCID Logo  ; Zhuang, S 4 ; Nowakowski, M E 5 ; Novakov, S 6   VIAFID ORCID Logo  ; Torunbalci, M M 7   VIAFID ORCID Logo  ; Prasad, B 8 ; Zollner, C J 9 ; Wang, Z 9 ; Dawley, N M 2   VIAFID ORCID Logo  ; Schubert, J 10   VIAFID ORCID Logo  ; Hunter, A H 11 ; Manipatruni, S 12 ; Nikonov, D E 12   VIAFID ORCID Logo  ; Young, I A 12   VIAFID ORCID Logo  ; Chen, L Q 13   VIAFID ORCID Logo  ; Bokor, J 5   VIAFID ORCID Logo  ; Bhave, S A 7   VIAFID ORCID Logo  ; Ramesh, R 14   VIAFID ORCID Logo  ; J-M, Hu 4   VIAFID ORCID Logo  ; Kioupakis, E 1 ; Hovden, R 1   VIAFID ORCID Logo  ; Schlom, D G 15   VIAFID ORCID Logo  ; Heron, J T 1   VIAFID ORCID Logo 

 University of Michigan, Department of Materials Science and Engineering, Ann Arbor, USA (GRID:grid.214458.e) (ISNI:0000000086837370) 
 Cornell University, Department of Materials Science and Engineering, Ithaca, USA (GRID:grid.5386.8) (ISNI:000000041936877X) 
 University at Buffalo - The State University of New York, Department of Materials Design and Innovation, Buffalo, USA (GRID:grid.273335.3) (ISNI:0000 0004 1936 9887) 
 University of Wisconsin-Madison, Department of Materials Science and Engineering, Madison, USA (GRID:grid.14003.36) (ISNI:0000 0001 2167 3675) 
 University of California, Department of Electrical Engineering and Computer Sciences, Berkeley, USA (GRID:grid.47840.3f) (ISNI:0000 0001 2181 7878) 
 University of Michigan, Department of Physics, Ann Arbor, USA (GRID:grid.214458.e) (ISNI:0000000086837370) 
 Purdue University, OxideMEMS Lab, West Lafayette, USA (GRID:grid.169077.e) (ISNI:0000 0004 1937 2197) 
 University of California, Department of Materials Science and Engineering, Berkeley, USA (GRID:grid.47840.3f) (ISNI:0000 0001 2181 7878) 
 Cornell University, School of Applied and Engineering Physics, Ithaca, USA (GRID:grid.5386.8) (ISNI:000000041936877X) 
10  Peter Grünberg Institute (PGI-9) and JARA Fundamentals of Future Information Technology, Forschungszentrum Jülich GmbH, Jülich, Germany (GRID:grid.8385.6) (ISNI:0000 0001 2297 375X) 
11  University of Michigan, Michigan Center for Materials Characterization, Ann Arbor, USA (GRID:grid.214458.e) (ISNI:0000000086837370) 
12  Components Research, Intel Corporation, Hillsboro, USA (GRID:grid.419318.6) (ISNI:0000 0004 1217 7655) 
13  Penn State University, Department of Materials Science and Engineering, State College, USA (GRID:grid.29857.31) (ISNI:0000 0001 2097 4281) 
14  University of California, Department of Materials Science and Engineering, Berkeley, USA (GRID:grid.47840.3f) (ISNI:0000 0001 2181 7878); Lawrence Berkeley National Laboratory, Materials Sciences Division, CA, USA (GRID:grid.184769.5) (ISNI:0000 0001 2231 4551); University of California, Department of Physics, Berkeley, USA (GRID:grid.47840.3f) (ISNI:0000 0001 2181 7878) 
15  Cornell University, Department of Materials Science and Engineering, Ithaca, USA (GRID:grid.5386.8) (ISNI:000000041936877X); Kavli Institute at Cornell for Nanoscale Science, Ithaca, USA (GRID:grid.5386.8) (ISNI:000000041936877X); Leibniz-Institut für Kristallzüchtung, Berlin, Germany (GRID:grid.461795.8) (ISNI:0000 0004 0493 6586) 
Publication year
2021
Publication date
2021
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2525889907
Copyright
© The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.