Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

As the idea of a new wireless communication standard (5G) started to circulate around the world, there was much speculation regarding its performance, making it necessary to carry out further research by keeping in view the challenges presented by it. 5G is considered a multi-system support network due to its ability to provide benefits to vertical industries. Due to the wide range of devices and applications, it is essential to provide support for massively interconnected devices. Network slicing has emerged as the key technology to meet the requirements of the communications network. In this paper, we present a review of the latest achievements of 5G network slicing by comparing the architecture of The Next Generation Mobile Network Alliance’s (NGMN’s) and 5G-PPP, using the enabling technologies software-defined networking (SDN) and network function virtualization (NFV). We then review and discuss machine learning (ML) techniques and their integration with network slicing for beyond 5G networks and elaborate on how ML techniques can be useful for mobility prediction and resource management. Lastly, we propose the use case of network slicing based on ML techniques in a smart seaport environment, which will help to manage the resources more efficiently.

Details

Title
Network Slicing for Beyond 5G Systems: An Overview of the Smart Port Use Case
Author
Onireti, Oluwakayode  VIAFID ORCID Logo  ; Sambo, Yusuf  VIAFID ORCID Logo  ; Muhammad Ali Imran  VIAFID ORCID Logo 
First page
1090
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2528258382
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.