Content area

Abstract

Latency-sensitive and bandwidth-intensive stream processing applications are dominant traffic generators over the Internet network. A stream consists of a continuous sequence of data elements, which require processing in nearly real-time. To improve communication latency and reduce the network congestion, Fog computing complements the Cloud services by moving the computation towards the edge of the network. Unfortunately, the heterogeneity of the new Cloud-Fog continuum raises important challenges related to deploying and executing data stream applications. We explore in this work a two-sided stable matching model called Cloud-Fog to data stream application matching (CODA) for deploying a distributed application represented as a workflow of stream processing microservices on heterogeneous Cloud-Fog computing resources. In CODA, the application microservices rank the continuum resources based on their microservice stream processing time, while resources rank the stream processing microservices based on their residual bandwidth. A stable many-to-one matching algorithm assigns microservices to resources based on their mutual preferences, aiming to optimize the complete stream processing time on the application side, and the total streaming traffic on the resource side. We evaluate the CODA algorithm using simulated and real-world Cloud-Fog scenarios. We achieved 11 to 45% lower stream processing time and 1.3 to 20% lower streaming traffic compared to related state-of-the-art approaches.

Details

1009240
Title
A Two-Sided Matching Model for Data Stream Processing in the Cloud-Fog Continuum
Publication title
arXiv.org; Ithaca
Publication year
2021
Publication date
May 17, 2021
Section
Computer Science
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2021-05-18
Milestone dates
2021-05-17 (Submission v1)
Publication history
 
 
   First posting date
18 May 2021
ProQuest document ID
2528654481
Document URL
https://www.proquest.com/working-papers/two-sided-matching-model-data-stream-processing/docview/2528654481/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2021-05-19
Database
ProQuest One Academic