Abstract

The COVID-19 pandemic has challenged front-line clinical decision-making, leading to numerous published prognostic tools. However, few models have been prospectively validated and none report implementation in practice. Here, we use 3345 retrospective and 474 prospective hospitalizations to develop and validate a parsimonious model to identify patients with favorable outcomes within 96 h of a prediction, based on real-time lab values, vital signs, and oxygen support variables. In retrospective and prospective validation, the model achieves high average precision (88.6% 95% CI: [88.4–88.7] and 90.8% [90.8–90.8]) and discrimination (95.1% [95.1–95.2] and 86.8% [86.8–86.9]) respectively. We implemented and integrated the model into the EHR, achieving a positive predictive value of 93.3% with 41% sensitivity. Preliminary results suggest clinicians are adopting these scores into their clinical workflows.

Details

Title
A validated, real-time prediction model for favorable outcomes in hospitalized COVID-19 patients
Author
Razavian Narges 1 ; Major, Vincent J 2   VIAFID ORCID Logo  ; Sudarshan Mukund 3   VIAFID ORCID Logo  ; Burk-Rafel Jesse 4   VIAFID ORCID Logo  ; Stella, Peter 5   VIAFID ORCID Logo  ; Randhawa Hardev 6 ; Bilaloglu Seda 2 ; Chen, Ji 2   VIAFID ORCID Logo  ; Nguy Vuthy 2 ; Wang, Walter 2 ; Zhang, Hao 2 ; Reinstein Ilan 7 ; Kudlowitz, David 4 ; Zenger, Cameron 4 ; Cao Meng 4 ; Zhang Ruina 4 ; Dogra Siddhant 4   VIAFID ORCID Logo  ; Harish, Keerthi B 2   VIAFID ORCID Logo  ; Bosworth, Brian 8 ; Fritz, Francois 8 ; Horwitz, Leora I 9 ; Ranganath Rajesh 10 ; Austrian, Jonathan 11 ; Yindalon, Aphinyanaphongs 12   VIAFID ORCID Logo 

 NYU Grossman School of Medicine, Department of Population Health, New York, USA (GRID:grid.137628.9) (ISNI:0000 0004 1936 8753); NYU Langone Health, Center for Healthcare Innovation and Delivery Science, New York, USA (GRID:grid.137628.9) (ISNI:0000 0004 1936 8753); New York University, Center for Data Science, New York, USA (GRID:grid.137628.9) (ISNI:0000 0004 1936 8753) 
 NYU Grossman School of Medicine, Department of Population Health, New York, USA (GRID:grid.137628.9) (ISNI:0000 0004 1936 8753) 
 New York University, Courant Institute of Mathematical Sciences, New York, USA (GRID:grid.137628.9) (ISNI:0000 0004 1936 8753) 
 NYU Grossman School of Medicine, Department of Medicine, New York, USA (GRID:grid.137628.9) (ISNI:0000 0004 1936 8753) 
 NYU Grossman School of Medicine, Department of Pediatrics, New York, USA (GRID:grid.137628.9) (ISNI:0000 0004 1936 8753) 
 NYU Langone Health, Medical Center IT, New York, USA (GRID:grid.137628.9) (ISNI:0000 0004 1936 8753) 
 NYU Grossman School of Medicine, Institute for Innovations in Medical Education, New York, USA (GRID:grid.137628.9) (ISNI:0000 0004 1936 8753) 
 NYU Grossman School of Medicine, Department of Medicine, New York, USA (GRID:grid.137628.9) (ISNI:0000 0004 1936 8753); NYU Langone Health, New York, USA (GRID:grid.137628.9) (ISNI:0000 0004 1936 8753) 
 NYU Grossman School of Medicine, Department of Population Health, New York, USA (GRID:grid.137628.9) (ISNI:0000 0004 1936 8753); NYU Langone Health, Center for Healthcare Innovation and Delivery Science, New York, USA (GRID:grid.137628.9) (ISNI:0000 0004 1936 8753); NYU Grossman School of Medicine, Department of Medicine, New York, USA (GRID:grid.137628.9) (ISNI:0000 0004 1936 8753) 
10  NYU Grossman School of Medicine, Department of Population Health, New York, USA (GRID:grid.137628.9) (ISNI:0000 0004 1936 8753); New York University, Center for Data Science, New York, USA (GRID:grid.137628.9) (ISNI:0000 0004 1936 8753); New York University, Courant Institute of Mathematical Sciences, New York, USA (GRID:grid.137628.9) (ISNI:0000 0004 1936 8753) 
11  NYU Grossman School of Medicine, Department of Medicine, New York, USA (GRID:grid.137628.9) (ISNI:0000 0004 1936 8753); NYU Langone Health, Medical Center IT, New York, USA (GRID:grid.137628.9) (ISNI:0000 0004 1936 8753) 
12  NYU Grossman School of Medicine, Department of Population Health, New York, USA (GRID:grid.137628.9) (ISNI:0000 0004 1936 8753); NYU Langone Health, Center for Healthcare Innovation and Delivery Science, New York, USA (GRID:grid.137628.9) (ISNI:0000 0004 1936 8753) 
Publication year
2020
Publication date
Dec 2020
Publisher
Nature Publishing Group
e-ISSN
23986352
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2528863497
Copyright
© The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.