It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Carbonylation is a non-enzymatic irreversible protein post-translational modification, and refers to the side chain of amino acid residues being attacked by reactive oxygen species and finally converted into carbonyl products. Studies have shown that protein carbonylation caused by reactive oxygen species is involved in the etiology and pathophysiological processes of aging, neurodegenerative diseases, inflammation, diabetes, amyotrophic lateral sclerosis, Huntington’s disease, and tumor. Current experimental approaches used to predict carbonylation sites are expensive, time-consuming, and limited in protein processing abilities. Computational prediction of the carbonylation residue location in protein post-translational modifications enhances the functional characterization of proteins.
Results
In this study, an integrated classifier algorithm, CarSite-II, was developed to identify K, P, R, and T carbonylated sites. The resampling method K-means similarity-based undersampling and the synthetic minority oversampling technique (SMOTE-KSU) were incorporated to balance the proportions of K, P, R, and T carbonylated training samples. Next, the integrated classifier system Rotation Forest uses “support vector machine” subclassifications to divide three types of feature spaces into several subsets. CarSite-II gained Matthew’s correlation coefficient (MCC) values of 0.2287/0.3125/0.2787/0.2814, False Positive rate values of 0.2628/0.1084/0.1383/0.1313, False Negative rate values of 0.2252/0.0205/0.0976/0.0608 for K/P/R/T carbonylation sites by tenfold cross-validation, respectively. On our independent test dataset, CarSite-II yield MCC values of 0.6358/0.2910/0.4629/0.3685, False Positive rate values of 0.0165/0.0203/0.0188/0.0094, False Negative rate values of 0.1026/0.1875/0.2037/0.3333 for K/P/R/T carbonylation sites. The results show that CarSite-II achieves remarkably better performance than all currently available prediction tools.
Conclusion
The related results revealed that CarSite-II achieved better performance than the currently available five programs, and revealed the usefulness of the SMOTE-KSU resampling approach and integration algorithm. For the convenience of experimental scientists, the web tool of CarSite-II is available in http://47.100.136.41:8081/
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer