Abstract

With the rapid growth of consumer credit and the huge amount of financial data developing effective credit scoring models is very crucial. Researchers have developed complex credit scoring models using statistical and artificial intelligence (AI) techniques to help banks and financial institutions to support their financial decisions. Neural networks are considered as a mostly wide used technique in finance and business applications. Thus, the main aim of this paper is to help bank management in scoring credit card clients using machine learning by modelling and predicting the consumer behaviour with respect to two aspects: the probability of single and consecutive missed payments for credit card customers. The proposed model is based on the bidirectional Long-Short Term Memory (LSTM) model to give the probability of a missed payment during the next month for each customer. The model was trained on a real credit card dataset and the customer behavioural scores are analysed using classical measures such as accuracy, Area Under the Curve, Brier score, Kolmogorov–Smirnov test, and H-measure. Calibration analysis of the LSTM model scores showed that they can be considered as probabilities of missed payments. The LSTM model was compared to four traditional machine learning algorithms: support vector machine, random forest, multi-layer perceptron neural network, and logistic regression. Experimental results show that, compared with traditional methods, the consumer credit scoring method based on the LSTM neural network has significantly improved consumer credit scoring.

Details

Title
Modelling customers credit card behaviour using bidirectional LSTM neural networks
Author
Ala’raj Maher 1   VIAFID ORCID Logo  ; Abbod, Maysam F 2 ; Majdalawieh Munir 1 

 Zayed University, Department of Information Systems, College of Technological Innovation, Dubai, United Arab Emirates (GRID:grid.444464.2) (ISNI:0000 0001 0650 0848) 
 Brunel University London, Department of Electronic and Computer Engineering, College of Engineering, Design and Physical Sciences, Uxbridge, UK (GRID:grid.7728.a) (ISNI:0000 0001 0724 6933) 
Publication year
2021
Publication date
Dec 2021
Publisher
Springer Nature B.V.
e-ISSN
21961115
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2529012689
Copyright
© The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.