Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

A lot of nanomaterials are using T1-T2 dual mode magnetic resonance (MR) contrast agents (CAs), but multilayer nanowire (NW) with iron (Fe) and manganese (Mn) as T1-T2 dual modal CAs has not been reported yet. Herein, we synthesized a Fe/Mn multilayer NW with an adjustable Fe layer, as T1-T2 dual-mode CAs. The relaxation performance of Fe/Mn multilayer NW was studied at 1.5 T. Results show that, when the length of the Fe layer is about 10 nm and the Mn is about 5 nm, the r1 value (21.8 mM−1s−1) and r2 value (74.8 mM−1s−1) of the Fe/Mn multilayer NW are higher than that of Mn NW (3.7 mM−1s−1) and Fe NW (59.3 mM−1s−1), respectively. We predict that our Fe/Mn multilayer NW could be used as T1-T2 dual mode MRI CAs in the near future.

Details

Title
Fe/Mn Multilayer Nanowires as High-Performance T1-T2 Dual Modal MRI Contrast Agents
Author
Cao, Xiaoming 1 ; Gu, Liyuan 2 ; Hu, Shike 2 ; Mukhtar, Aiman 1 ; Wu, Kaiming 1 

 The State Key Laboratory of Refractories and Metallurgy, Hubei Province Key Laboratory of Systems Science in Metallurgical Process, International Research Institute for Steel Technology, Collaborative Innovation Center for Advanced Steels, Wuhan University of Science and Technology, Wuhan 430081, China; [email protected] 
 Research and Development Center for Non-Powered Nuclear Technology, Hubei University of Science and Technology, Xianning 437000, China; [email protected] (L.G.); [email protected] (S.H.) 
First page
2238
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2530159645
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.