Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The precise prediction of the streamflow of reservoirs is of considerable importance for many activities relating to water resource management, such as reservoir operation and flood and drought control and protection. This study aimed to develop and evaluate the applicability of a hidden Markov model (HMM) and two hybrid models, i.e., the support vector machine-genetic algorithm (SVM-GA) and artificial neural fuzzy inference system-genetic algorithm (ANFIS-GA), for reservoir inflow forecasting at the King Fahd dam, Saudi Arabia. The results obtained by the HMM model were compared with those for the two hybrid models ANFIS-GA and SVM-GA, and with those for individual SVM and ANFIS models based on performance evaluation indicators and visual inspection. The results of the comparison revealed that the ANFIS-GA model and ANFIS model provided superior results for forecasting monthly inflow with satisfactory accuracy in both training (R2 = 0.924, 0.857) and testing (R2 = 0.842, 0.810) models. The performance evaluation results for the developed models showed that the GA-induced improvement in the ANFIS and SVR forecasts was matched by an approximately 25% decrease in RMSE and around a 13% increase in Nash–Sutcliffe efficiency. The promising accuracy of the proposed models demonstrates their potential for applications in monthly inflow forecasting in the present semiarid region.

Details

Title
A Comparative Analysis of Hidden Markov Model, Hybrid Support Vector Machines, and Hybrid Artificial Neural Fuzzy Inference System in Reservoir Inflow Forecasting (Case Study: The King Fahd Dam, Saudi Arabia)
Author
Alquraish, Mohammed M 1 ; Abuhasel, Khaled A 1   VIAFID ORCID Logo  ; Alqahtani, Abdulrahman S 2 ; Khadr, Mosaad 3   VIAFID ORCID Logo 

 Department of Mechanical Engineering, College of Engineering, University of Bisha, P.O. Box 001, Bisha 67714, Saudi Arabia; [email protected] (M.M.A.); [email protected] (K.A.A.) 
 Department of Computer Science, College of Computing and Information Technology, University of Bisha, P.O. Box 001, Bisha 67714, Saudi Arabia; [email protected] 
 Department of Civil Engineering, College of Engineering, University of Bisha, P.O. Box 001, Bisha 67714, Saudi Arabia 
First page
1236
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20734441
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2531736009
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.