Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The green chemistry method is the preferred approach for synthesizing metal and metal oxide nanoparticles because of its low toxicity, environmental friendliness, feasibility, and safety to human health compared with other chemical or physical methods. The present work reports the phytogenic synthesis of palladium nanoparticles (PdNPs) using an aqueous extract of Matricaria recutita (Chamomile). The phytochemical-mediated synthesis of PdNPs is an economical and eco-friendly approach without using toxic elements as reducing and capping or stabilizing agents. The UV-visible spectroscopic characterization was initially used to confirm the preparation of PdNPs using an aqueous extract of M. recutita flowers as a bioreductant for the reduction of Pd2+ to Pd0 without using any extra capping and reducing agents. The appearance of surface plasmon resonance (SPR) peak at 286 nm confirmed the formation of M. recutita extract-based PdNPs. Furthermore, the PdNPs were characterized by TEM, SEM, EDX, XRD, XPS, and FTIR to confirm their proper synthesis. The thermogravimetric analysis (TGA) was implemented to interpret the decomposition pattern and thermal stability of as-synthesized PdNPs. The biosynthesized PdNPs were further applied as a nanocatalyst in degradation of an azo dye Congo red (CR) in the presence of NaBH4. The catalytic reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) was also investigated in the presence of NaBH4. All the catalytic reactions were performed in water, and no significant loss in catalytic activity was observed after recovery and reusability of the biosynthesized PdNPs.

Details

Title
Bioengineered Matricaria recutita Extract-Assisted Palladium Nanoparticles for the Congo Red Dye Degradation and Catalytic Reduction of 4-Nitrophenol to 4-Aminophenol
Author
Maqsood Ahmad Malik 1 ; Abdulmohsen Ali Alshehri 1 ; May Abdullah Abomuti 1 ; Danish, Ekram Y 1 ; Patel, Rajan 2 

 Chemistry Department, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; [email protected] (A.A.A.); [email protected] (M.A.A.); [email protected] (E.Y.D.) 
 Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India; [email protected] 
First page
103
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
23056304
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2532387010
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.