It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Recently, several socio-/bio-inspired algorithms have been proposed for solving a variety of problems. Generally, they perform well when applied for solving unconstrained problems; however, their performance degenerates when applied for solving constrained problems. Several types of penalty function approaches have been proposed so far for handling linear and non-linear constraints. Even though the approach is quite easy to understand, the precise choice of penalty parameter is very much important. It may further necessitate significant number of preliminary trials. To overcome this limitation, a new self-adaptive penalty function (SAPF) approach is proposed and incorporated into socio-inspired Cohort Intelligence (CI) algorithm. This approach is referred to as CI–SAPF. Furthermore, CI–SAPF approach is hybridized with Colliding Bodies Optimization (CBO) algorithm referred to as CI–SAPF–CBO algorithm. The performance of the CI–SAPF and CI–SAPF–CBO algorithms is validated by solving discrete and mixed variable problems from truss structure domain, design engineering domain, and several problems of linear and nonlinear in nature. Furthermore, the applicability of the proposed techniques is validated by solving two real-world applications from manufacturing engineering domain. The results obtained from CI–SAPF and CI–SAPF–CBO are promising and computationally efficient when compared with other nature inspired optimization algorithms. A non-parametric Wilcoxon’s rank sum test is performed on the obtained statistical solutions to examine the significance of CI–SAPF–CBO. In addition, the effect of the penalty parameter on pseudo-objective function, penalty function and constrained violations is analyzed and discussed along with the advantages over other algorithms.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer