Full Text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

A novel adaptive displacement-controlled test setup was developed for fatigue testing on mini specimens. In property characterization of additive manufacturing materials, mini specimens are preferred due to the specimen preparation, and manufacturing cost but mini specimens demonstrate higher fatigue strength than standard specimens due to the lower probability of material defects resulting in fatigue. In this study, a dual gauge section Krouse type mini specimen was designed to conduct fatigue tests on additively manufactured materials. The large surface area of the specimen with a constant stress distribution and increased control volume as the gauge section may capture all different types of surface and microstructural defects of the material. A fully reversed bending (R = −1) fatigue test was performed on simply supported specimens. In the displacement-controlled mechanism, the variation in the control signal during the test due to the stiffness variation of the specimen provides a unique insight into identifying the nucleation and propagation phase. The fatigue performance of the wrought 304 and additively manufactured 304L stainless steel was compared applying a control signal monitoring (CSM) method. The test results and analyses validate the design of the specimen and the effective implementation of the test bench in fatigue testing of additively manufactured materials.

Details

Title
A Displacement Controlled Fatigue Test Method for Additively Manufactured Materials
Author
Mohammad Masud Parvez 1   VIAFID ORCID Logo  ; Chen, Yitao 1 ; Karnati, Sreekar 1 ; Coward, Connor 1 ; Newkirk, Joseph W 2 ; Liou, Frank 1 

 Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, Rolla, MO 65401, USA 
 Material Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65401, USA 
First page
3226
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2533572212
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.