Full text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Reinforced bar corrosion induced by chloride ingression is one of the most significant threats to the durability of concrete structures in marine environments. The concrete cover thickness, compressive strength, chloride diffusion coefficient, and surface defects of reinforced concrete in the Jiaozhou Bay sea-crossing railway bridge were measured. The temperature and relative humidity in the concrete and the loading applied onto the reinforced concrete were monitored. Based on the DuraCrete model, a revised model for the service life prediction of concrete structures was established, considering the effects of temperature and loading on the chloride diffusion coefficient. Further, the reliability indexes of the reinforced concrete box girder, pier, and platform, located in the marine and land sections, in relation to service lives lasting various numbers of years, were calculated. The measured and calculated results show that the mean cover thicknesses of concrete piers in the marine and land sections are 52 mm and 36 mm, respectively, and the corresponding standard deviations are 5.21 mm and 3.18 mm, respectively. The mean compressive strengths of concrete in the marine and land sections are 56 MPa and 46 MPa, respectively. The corresponding standard deviations are 2.45 MPa and 2.67 MPa, respectively. The reliability indexes of the reinforced concrete box girder and platform in the marine section, under the condition of a service life of 100 years, are 1.81 and 1.76, respectively. When the corrosion-resistant reinforced bar was used in the pier structure in the marine section, its reliability index increased to 2.01. Furthermore, the reliability index of the reinforced concrete damaged by salt fog in the land section was 1.71.

Details

Title
Service Life Prediction of Reinforced Concrete in a Sea-Crossing Railway Bridge in Jiaozhou Bay: A Case Study
Author
Li, Zhe 1   VIAFID ORCID Logo  ; Jin, Zuquan 1 ; Zhao, Tiejun 1 ; Wang, Penggang 1 ; Zhao, Lixiao 1 ; Xiong, Chuansheng 1 ; Kang, Yue 1 

 School of Civil Engineering, Qingdao University of Technology, Qingdao 266033, China; Cooperative Innovation Center of Engineering Construction and Safety in Shandong Blue Economic Zone, Qingdao 266033, China 
First page
3570
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2533597563
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.