Full text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Flexible needles have been widely used in minimally invasive surgeries, especially in percutaneous interventions. Among the interventions, tip position of the curved needle is very important, since it directly affects the success of the surgeries. In this paper, we present a method to estimate the tip position of a long-curved needle by using 2D transverse ultrasound images from a robotic ultrasound system. Ultrasound is first used to detect the cross section of long-flexible needle. A new imaging approach is proposed based on the selection of numbers of pixels with a higher gray level, which can directly remove the lower gray level to highlight the needle. After that, the needle shape tracking method is proposed by combining the image processing with the Kalman filter by using 3D needle positions, which develop a robust needle tracking procedure from 1 mm to 8 mm scan intervals. Shape reconstruction is then achieved using the curve fitting method. Finally, the needle tip position is estimated based on the curve fitting result. Experimental results showed that the estimation error of tip position is less than 1 mm within 4 mm scan intervals. The advantage of the proposed method is that the shape and tip position can be estimated through scanning the needle’s cross sections at intervals along the direction of needle insertion without detecting the tip.

Details

Title
Tip Estimation Method in Phantoms for Curved Needle Using 2D Transverse Ultrasound Images
Author
Li, Zihao 1   VIAFID ORCID Logo  ; Song, Shuang 1 ; Liu, Li 2 ; Meng, Max Q-H 2 

 School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China; [email protected] 
 Robotics, Perception and Artificial Intelligence Lab, The Chinese University of Hong Kong, N.T., Hong Kong, China; [email protected] 
First page
5305
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2533769046
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.