Full Text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Steel defect diagnostics is considerably important for a steel-manufacturing industry as it is strongly related to the product quality and production efficiency. Product quality control suffers from a real-time diagnostic capability since it is less-automatic and is not reliable in detecting steel surface defects. In this study, we propose a relatively new approach for diagnosing steel defects using a deep structured neural network, e.g., convolutional neural network (CNN) with class activation maps. Rather than using a simple deep learning algorithm for the classification task, we extend the CNN diagnostic model for being used to analyze the localized defect regions within the images to support a real-time visual decision-making process. Based on the experimental results, the proposed approach achieves a near-perfect detection performance at 99.44% and 0.99 concerning the accuracy and F-1 score metric, respectively. The results are better than other shallow machine learning algorithms, i.e., support vector machine and logistic regression under the same validation technique.

Details

Title
Steel Surface Defect Diagnostics Using Deep Convolutional Neural Network and Class Activation Map
Author
Soo Young Lee 1   VIAFID ORCID Logo  ; Bayu Adhi Tama 1   VIAFID ORCID Logo  ; Moon, Seok Jun 2 ; Lee, Seungchul 1   VIAFID ORCID Logo 

 Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea; [email protected] (S.Y.L.); [email protected] (B.A.T.) 
 Department of System Dynamics, Korea Institute of Machinery and Materials, Daejeon 34103, Korea; [email protected] 
First page
5449
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2533769703
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.