Full text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Single-screw extruders are the most common equipment used for polymer extrusion. The study of the hydrodynamics of a polymer melts flow in the extruder channel is the basis for modeling and understanding the extrusion process. In general form, the extruder includes a straight section with a screw installed in it. In this study, the three-dimensional mathematical modeling of the polymer solutions flow in the metering zone of a single-screw extruder is performed. The influences of the screw geometry (L/D2 = 1…3) on the flow structure and the pressure drop are analyzed under a speed rotation up to 60 rpm. Aqueous solutions of 0.5% polyacrylamide (0.5% PAA) and 1.5% sodium salt of carboxymethyl cellulose (1.5% CMC) are considered as the working fluid.

Details

Title
Numerical Simulation of Polymer Solutions in a Single-Screw Extruder
Author
Gataullin, Rustem; Karaeva, Julia
First page
5423
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2533769714
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.