Full Text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This study paper presents a comprehensive review of virtual inertia (VI)-based inverters in modern power systems. The transition from the synchronous generator (SG)-based conventional power generation to converter-based renewable energy sources (RES) deteriorates the frequency stability of the power system due to the intermittency of wind and photovoltaic (PV) generation. Unlike conventional power generation, the lack of rotational inertia becomes the main challenge to interface RES with the electrical grid via power electronic converters. In the past several years, researchers have addressed this issue by emulating the behavior of SG mathematically via pulse width modulation (PWM) controller linked to conventional inverter systems. These systems are technically known as VI-based inverters, which consist of virtual synchronous machine (VSM), virtual synchronous generator (VSG), and synchronverter. This paper provides an extensive insight into the latest development, application, challenges, and prospect of VI application, which is crucial for the transition to low-carbon power system.

Details

Title
Virtual Inertia-Based Inverters for Mitigating Frequency Instability in Grid-Connected Renewable Energy System: A Review
Author
Yap, Kah Yung  VIAFID ORCID Logo  ; Lim, Joanne Mun-Yee
First page
5300
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2533769774
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.